
In online fair division, items arrive one by one and are allocated to agents via two simple mechanisms:
Like and Balanced Like. We study pure Nash equilibria of these two mechanisms.

Model and mechanisms
Allocation Instance I : agents a1 to an, indivisible items o1 to om, utility uij ∈ Q≥0

for each ai and oj , ordering o = (o1, . . . , om) and mechanism M

Setting: At moment j , item oj arrives according to o, each ai reports (or bids) a
value vij ∈ Q≥0 for oj and M allocates oj to an agent that is considered feasible.

Let πj be an allocation of o1 to oj−1. Given πj , the probability pi(oj) of agent ai
for item oj is 1

nj
where nj is the number of feasible agents.

The Like mechanism: given πj , agent ai is feasible for oj if vij > 0.
The Balanced Like mechanism: given πj , agent ai is feasible for oj if vij > 0
and has received fewest items in πj among those agents with positive bids for oj .

Strategy-proofness
Online Strategy-Proofness: For each round j and πj , no agent ai can increase their
outcome of ui(πj) + pi(oj) · uij supposing πj is fixed and no information about
future items is known.

Strategy-Proofness: For each round j and πj , no agent ai can increase their out-
come of ui(πj) +

∑m
k=j pi(ok) · uik supposing πj is fixed and all information about

future items is known.

Online Group Strategy-Proofness: For each round j and πj , no group G can increase
their outcome of

∑
ai∈G ui(πj) + pi(oj) · uij supposing past bids are fixed and no

information about future items is known.

Group Strategy-Proofness: For each round j and πj , no group G can increase their
outcome of

∑
ai∈G ui(πj) +

∑
ai∈G pi(oj) · uij supposing past bids are fixed and all

information about future items is known.

Example (Online vs offline strategic behavior): Agents a1, a2, items o1, o2, utilities
u11 = 1, u12 = 2, u21 = 2, u22 = 1, o = (o1, o2) and Balanced Like.

o o1 o2

a1 1 2
a2 2 1

1. With knowledge of o1 and o2, a1 increases their out-
come from 3

2 to 2 if they bid strategically 0 for o1.

2. With knowledge of o1 only, each agent bids their
sincere utility for o1.

mechanism SP OSP GSP OGSP
general utilities

Like X X × ×
Balanced Like × X × ×

binary utilities
Like X X X X

Balanced Like × X × X
Table 1: Axiomatic results.

Pure Nash equilibria
Group PNE: For each j , πj , no group G of agents has an incentive to misreport their
bids for oj to om and increase

∑
ai∈G ui(πj) +

∑
ai∈G

∑m
k=j pi(ok) · vik supposing

all bids of agents of all other groups are fixed.

Online Group PNE: For each j , πj , no group G of agents has an incentive to
misreport their bids for oj and increase

∑
ai∈G ui(πj)+

∑
ai∈G pi(oj) ·vij supposing

all bids of agents of all other groups are fixed.

Note: Competitive PNE and Online PNE suppose each agent is in a group alone.

Computing equilibria

(Online) Group Pure Nash Equilibrium

Input: instance I , mechanism M and groups G1, . . . ,Gk

Output: a (online) group pure Nash equilibrium of A with M

Theorem 1: With the Balanced Like mechanism and 0/1 utilities, computing
(online) PNE is in NP-hard.

Unique weak PNE [3].
o o1 o2

a1 1 2
a2 2 1

Unique strict PNE [3].
o o1 o2 o3

a1 1 1 1
a2 0 1 0
a3 1 0 1

Proof main steps:

1. Deciding if an agent receives an item with > 0 probability is NP-hard [1].

2. Computing a weak (strict) PNE is at least as hard as deciding if an agent gets
an item with 0 (> 0) expected probability.

Theorem 2: With the Like mechanism and general utilities, computing (online)
GPNE is in P.
Proof main steps: We present a simple iterative algorithm in which agents commit
to their optimal strategies at earliest iterations.

1. For each item oj ,
For each group Gl with an agent whose strategy for oj is not computed,

compute the set S ⊆ Gl of agents that maximize
∑

ai∈S
uij

|S |+rjl
.

2. The computed profile for oj and G1, . . . ,Gk is a (online) GPNE.

3. The collection of computed (online) GPNE for items o1 to om is a (online)
GPNE because Like is Markovian.

Counting equilibria [2]

#(Online) Group Pure Nash Equilibrium

Input: instance I , mechanism M and groups G1, . . . ,Gk

Output: number of (online) GPNE of A with M

Theorem 3: With the Balanced Like mechanism and 0/1 utilities, counting
(online) GPNE is in #P-hard.

u1

u2

u3

u4

v5

v6

v7

v8

3-regular
bipartite graph

G

o v1 v2 v3 v4 a1 b1 a2 b2 a3 b3 a4 b4

u1
1 1 0 0 0 1 1 0 0 0 0 0 0
u2

1 0 1 0 0 1 1 0 0 0 0 0 0
u3

1 0 0 0 1 1 1 0 0 0 0 0 0
u1

2 0 1 0 0 0 0 1 1 0 0 0 0
u2

2 0 0 1 0 0 0 1 1 0 0 0 0
u3

2 0 0 0 1 0 0 1 1 0 0 0 0
u1

3 1 0 0 0 0 0 0 0 1 1 0 0
u2

3 0 0 1 0 0 0 0 0 1 1 0 0
u3

3 0 0 0 1 0 0 0 0 1 1 0 0
u1

4 1 0 0 0 0 0 0 0 0 0 1 1
u2

4 0 1 0 0 0 0 0 0 0 0 1 1
u3

4 0 0 1 0 0 0 0 0 0 0 1 1

instance IG
Theorem 4: With the Like mechanism and general utilities, counting (online)
GPNE is in #P-hard.
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