PURE NASH EQUILIBRIA IN ONLINE FAIR DIVISION

IJCAI 2017, Melbourne, Australia

Martin Aleksandrov and Toby Walsh UNSW Sydney and Data61, CSIRO and TU Berlin

www.data61.csiro.au

In online fair division, items arrive one by one and are allocated to agents via two simple mechanisms: LIKE and BALANCED LIKE. We study pure Nash equilibria of these two mechanisms.

Model and mechanisms

Allocation Instance I: agents a_1 to a_n , indivisible items o_1 to o_m , utility $u_{ii} \in \mathbb{Q}^{\geq 0}$ for each a_i and o_i , ordering $o = (o_1, \ldots, o_m)$ and mechanism M

Setting: At moment *j*, item o_i arrives according to *o*, each a_i reports (or *bids*) a value $v_{ij} \in \mathbb{Q}^{\geq 0}$ for o_j and M allocates o_j to an agent that is considered *feasible*.

Let π_i be an allocation of o_1 to o_{i-1} . Given π_i , the probability $p_i(o_i)$ of agent a_i for item o_j is $\frac{1}{n_i}$ where n_j is the number of feasible agents.

The LIKE mechanism: given π_i , agent a_i is feasible for o_i if $v_{ij} > 0$. The BALANCED LIKE mechanism: given π_i , agent a_i is feasible for o_i if $v_{ii} > 0$ and has received fewest items in π_i among those agents with positive bids for o_i .

Strategy-proofness

Online Strategy-Proofness: For each round *j* and π_i , no agent a_i can increase their outcome of $u_i(\pi_i) + p_i(o_j) \cdot u_{ij}$ supposing π_j is *fixed* and **no** information about future items is known.

Strategy-Proofness: For each round *j* and π_i , no agent a_i can increase their outcome of $u_i(\pi_j) + \sum_{k=j}^m p_i(o_k) \cdot u_{ik}$ supposing π_j is *fixed* and all information about future items is known.

Online Group Strategy-Proofness: For each round *j* and π_i , no group *G* can increase

Computing equilibria

(Online) Group Pure Nash Equilibrium Input: instance I, mechanism \mathcal{M} and groups G_1, \ldots, G_k Output: a (online) group pure Nash equilibrium of \mathcal{A} with \mathcal{M}

Theorem 1: With the BALANCED LIKE mechanism and 0/1 utilities, computing (online) PNE is in NP-hard.

DATA 61

Unique weak PNE [3].	Unique strict PNE [3].					
$O O_1 O_2$	<i>o o</i> ₁ <i>o</i> ₂ <i>o</i> ₃					
$\frac{a_1 a_1}{a_1} \frac{1}{2}$	$a_1 1 1 1$					
$\begin{vmatrix} a_1 \\ a_2 \end{vmatrix} \begin{vmatrix} a_2 \\ 2 \end{vmatrix} \begin{pmatrix} a_1 \\ a_2 \end{vmatrix}$	$a_2 0 1 0$					
	a3 1 0 1					

Proof main steps:

1. Deciding if an agent receives an item with > 0 probability is NP-hard [1].

2. Computing a weak (strict) PNE is at least as hard as deciding if an agent gets an item with 0 (> 0) expected probability.

Theorem 2: With the LIKE mechanism and general utilities, computing (online) GPNE is in P.

Proof main steps: We present a simple iterative algorithm in which agents commit to their optimal strategies at earliest iterations.

their outcome of $\sum_{a_i \in G} u_i(\pi_j) + p_i(o_j) \cdot u_{ij}$ supposing past bids are *fixed* and no information about future items is known.

Group Strategy-Proofness: For each round *j* and π_i , no group *G* can increase their outcome of $\sum_{a_i \in G} u_i(\pi_j) + \sum_{a_i \in G} p_i(o_j) \cdot u_{ij}$ supposing past bids are *fixed* and all information about future items is known.

Example (Online vs offline strategic behavior): Agents a_1, a_2 , items o_1, o_2 , utilities $u_{11} = 1, u_{12} = 2, u_{21} = 2, u_{22} = 1, o = (o_1, o_2)$ and BALANCED LIKE.

 $\begin{array}{c|c} o & o_1 & o_2 \\ \hline a_1 & 1 & 2 \end{array}$ *a*₂ 2 1

1. With knowledge of o_1 and o_2 , a_1 increases their outcome from $\frac{3}{2}$ to 2 if they bid strategically 0 for o_1 .

2. With knowledge of o_1 only, each agent bids their sincere utility for o_1 .

mechanism	SP	OSP	GSP	OGSP					
	general utilities								
Like	\checkmark	\checkmark	X	Х					
BALANCED LIKE	Х	\checkmark	Х	Х					
	binary utilities								
Like	\checkmark	\checkmark	\checkmark	\checkmark					
BALANCED LIKE	×	\checkmark	×	\checkmark					

Table 1: Axiomatic results.

Pure Nash equilibria

1. For each item o_i ,

For each group G_i with an agent whose strategy for o_j is not computed, compute the set $S \subseteq G_l$ of agents that maximize $\frac{\sum_{a_i \in S} u_{ij}}{|S| + r_{il}}$.

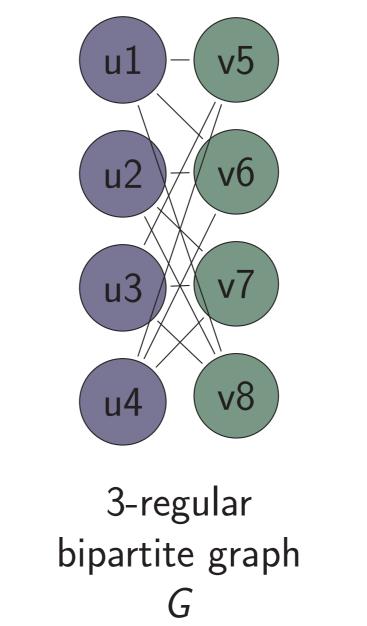
2. The computed profile for o_i and G_1, \ldots, G_k is a (online) GPNE.

3. The collection of computed (online) GPNE for items o_1 to o_m is a (online) GPNE because LIKE is Markovian.

Counting equilibria [2]

#(Online) Group Pure Nash Equilibrium
Input: instance I, mechanism \mathcal{M} and groups G_1, \ldots, G_k
Output: number of (online) GPNE of ${\mathcal A}$ with ${\mathcal M}$

Theorem 3: With the BALANCED LIKE mechanism and 0/1 utilities, counting (online) GPNE is in #P-hard.



 $o v_1 v_2 v_3 v_4 a_1 b_1 a_2 b_2 a_3 b_3 a_4 b_4$ 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 $u_2^2 \ 0 \ 0 \ \mathbf{1} \ 0 \ 0 \ \mathbf{1} \ \mathbf{1} \ 0 \ 0 \ \mathbf{0}$

Group PNE: For each j, π_i , no group G of agents has an incentive to misreport their bids for o_j to o_m and increase $\sum_{a_i \in G} u_i(\pi_j) + \sum_{a_i \in G} \sum_{k=i}^m p_i(o_k) \cdot v_{ik}$ supposing all bids of agents of all other groups are fixed.

Online Group PNE: For each j, π_i , no group G of agents has an incentive to misreport their bids for o_j and increase $\sum_{a_i \in G} u_i(\pi_j) + \sum_{a_i \in G} p_i(o_j) \cdot v_{ij}$ supposing all bids of agents of all other groups are fixed.

Note: Competitive PNE and Online PNE suppose each agent is in a group alone.

u_2	U	U	U	L	U	U	1	L	U	U	U	U	
u_{3}^{1}	1	0	0	0	0	0	0	0	1	1	0	0	
u_{3}^{2}	0	0	1	0	0	0	0	0	1	1	0	0	
u_{3}^{3}													
u_4^1													
u_4^2	0	1	0	0	0	0	0	0	0	0	1	1	
u_{4}^{3}													

instance I_G

Theorem 4: With the LIKE mechanism and general utilities, counting (online) GPNE is in #P-hard.

FOR FURTHER INFORMATION

Martin Aleksandrov martin.aleksandrov@data61.com.au Toby Walsh toby.walsh@data61.com.au

REFERENCES

1) Aleksandrov, M. and Walsh, T., *Expected outcomes and manipulations in online* fair division, KI 2017, Dortmund, Germany, September 25-29, 2017

2) Conitzer, V. and Sandholm, T., New complexity results about Nash equilibria, Games and Economic Behavior, 2008, 63(2), 621–641

3) Shapley, L. S. and Rigby, F. D., Equilibrium points in games with vector payoffs, Naval Research Logistics Quarterly, 1959, 6(1), 2540–2546

ACKNOWLEDGEMENTS

1) Data61 is supported by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program.

2) Toby Walsh acknowledges support from the European Research Council, as well as the Asian Office of Aerospace Research and Development.

