Combining Constraint Solving with Mining and Learning: Papers from the AAAI 2013 Workshop

Heuristics and Policies for
Online Pickup and Delivery Problems

Martin Aleksandrov and Pedro Barahona
FCT, UNL, Caparica, Portugal
{m.aleksandrov, pb} @fct.unl.pt

Philip Kilby and Toby Walsh
NICTA, Australia
{Philip.Kilby, Toby.Walsh} @nicta.com.au

Abstract

A courier company approached NICTA to help develop
a decision support tool for managing their daily pickup
and delivery problem. They take orders from customers
throughout the day and have to allocate one of the ve-
hicles of their fleet to best meet the demand. This deci-
sion takes into account a number of hard (e.g. a vehicle
must have capacity available for a parcel to be trans-
ported, a parcel is picked up and delivered by the same
vehicle, a vehicle must wait if it arrives earlier then re-
quested) and soft (e.g. a delivery that occurs outside a
given time interval is penalized) constraints. The sys-
tem we implemented to manage this Online Pickup and
Delivery Problem (OPDP) selects an appropriate heuris-
tic to decide the allocation of parcels to vehicles based
on previously collected real data from the company. To
verify the system working process we are proposing a
novel combination of machine learning and optimisa-
tion where optimisation is used post hoc to measure the
quality of these decisions. The results obtained show
that the online schedules are only slightly worse than
schedules produced “offline” and even outperform these
for some periods of the day. We conclude by summariz-
ing our efforts and several future improvements.

Motivation

The article is motivated by a real world problem that was
presented to the Intelligent Fleet Logistics team at NICTA.
Bonds Express, a local package delivery company provided
some real data together with some technical information
about the Sydney fleet and the human resources involved.
Their request was to develop a tool assisting the company
dispatchers in controlling the fleet by making multiple de-
cisions during the day about the assignment of any new or-
der to the vehicle which mostly satisfies particular time and
other constraints.

The addressed problem belongs to the class of Online
Pickup and Delivery Problems (Jaillet and Wagner 2008)
with Time Windows (Mitrovié-Mini¢ 1998). Our goal is
to learn dispatching policies controlling the fleet of vehi-
cles online, rather than using an offline approach. There has

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been a limited amount of research on solving such prob-
lems. However, there has been some work which we report
next. Cortés et al. (Cortés, Nufiez, and Sdez 2008) applied
a hybrid-predictive control for Dynamic PDPs, Gendreau et
al. (Gendreau et al. 2006) proposed neighbourhood search
heuristics for dispatching vehicles and Beham et al. (Beham
et al. 2009) used a simulation-based model to realize this.
However, none of them ranks heuristics and learns dispatch-
ing policies as here.

In the next section we present more detailed features of
the problem and analyze their statistical properties to sup-
port a model used to complement real orders. Then the fol-
lowing section overviews the studied heuristics presenting
some indicators of their relative merit. The system imple-
mented is described next, which addresses the automated
learning of heuristic features for specific orders in real time,
as well as their subsequent selection, together with a brief
discussion on the results obtained. Finally, we summarize
the work done and present some future developments.

Problem and Data

The Sydney branch has 192 vehicles, having their own com-
modity characteristics as well as different speeds, i.e. vehicle
type (e.g. van, motorbike, truck, etc.). In addition, they be-
gin and finish each working day at different depots (Irnich
2000). In fact, many start and end their day at the home of
the driver. Each vehicle in the company performs in one of
the following three shifts: 5 a.m. - 1 p.m., 9 a.m. - 3 p.m. and
1 p.m. - 7 p.m.. The customer orders are (1) static (i.e. known
in the morning of the working day) and (2) dynamic (i.e. ar-
rive unpredictably as the day progresses). Each order has the
following attributes attached to it: (1) identifier, (2) number
of pallets, (3) weight, (4) arrival time (i.e. the time when the
particular customer requests the demand), (5) service time
(i.e. the time needed to load and unload the packages at the
requested locations), (6) earliest pick-up time (i.e. the time
before which the packages cannot be picked up), (7) latest
pick-up time (i.e. the time before which the packages are
preferred to be picked up), (8) latest delivery time (i.e. the
time before which the packages are preferred to be deliv-
ered) and the (9) locations between which the packages are
to be transported. We consider two different service times

for orders below (3 min) and above (10 min) 250 kilograms.
An order that is picked up by one vehicle must be delivered
by it and a driver can only be consulted about some new
demands at a customer or a depot location (i.e. we do not
assume vehicle diversion).

Next, we describe the real data provided by the company
and the way we generated a collection of 230 datasets using
some statistical regularities found in this data. Initially, the
company provided information about the services performed
within a single day. This list contained 1413 orders in total
with 65 static, 1128 dynamic and 220 next-day demands.
We consider scheduling within a single day. Each customer
order in this summary is described as shown in Table 1.

id P w a s ep Ip Id loc, locy
6829586 | 0 5 05:55 | 00:06 | 05:55 | 06:25 | 06:10 | (—33.71,150.78) | (—34.21,150.80)
6831652 | 1 | 400 | 06:08 [00:20 | 07:30 | 08:30 [09:55 | (=35 51.45) | (—34.29,151.46)
6831654 | 0 | 1800 | 06:22 | 00:20 | 07:00 | 09:00 | 11:00 | (—3 51.28) | (—33.76,151.53)
6831655 | 0 1 06:46 | 00:06 | 07:00 | 08:00 | 10:00 | (—33. 53) | (—33.63,150.91)

Table 1: Order attributes : id-identifier, p - number of pal-
lets, w - weight, a - arrival time, s - service time, ep - ear-
liest pickup time, Ip - latest pickup time, Id - latest delivery
time and loc,, loc, - geographical locations where the client
requested services.

We studied the distributions of these features and also
the regression dependencies among them. After conducting
multiple statistical analyses we found two groups of inde-
pendent features, i.e. (1) weight and number of pallets, and
(2) arrival, earliest pickup, latest pickup and latest delivery
times. However, the weight and the arrival time of the de-
mands are predictors within these groups, respectively. In
Figures 1 and 2 we show their distributions.

Kolmogorov-Smirnov d =0.21, p <0.01

Chi-Square test = 50.69, df =6, p = 0.0000
1100

1000

number of arrivals
N w - o (o2} ~ [+ o
o o o (=} (=] o o (=}
o o o o o o o o

o
I=3

o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100 300 500 700 9200 1100 1300 1500 1700 1900

weight

Figure 1: The distribution mass-function of the order weight.

The regression coefficients we obtained from the analyses
are 7, ,, = 0.62 between pallets and weight, and ¢, . =
0.98, r1p.ep = 0.98, and 14,1, = 0.95 between the earliest
pickup and arrival times, latest and earliest pickup times, and
latest delivery and pickup times.

Next, using this statistical information we generated 230
datasets. Each one of them aims to represent the information

revealed in the company within a single working day. These
are exploited as follows :

e Datasets 1-100 are used to assess the performance of the
heuristics described in the next section. We call the tuples
in these datasets real orders (RO).

e Each of the datasets 101-200 aims to simulate additional
customer demands for a day from the first group and, thus,
to anticipate some possible future orders. The latter are
called simulated orders (SO).

e The last 30 datasets serve to evaluate the quality of the
policies learnt.

1300

1200

1100

1000

500

cummulative number of arrivals

Figure 2: Cumulative function of the interarrival time.

In Table 2 we summarize some statistics regarding the
generated customer errands. By m and o are denoted the
mean and the standart deviation, respectively, of the arrived
orders per day. We also report the minimum (min) and the
maximum (max) numbers of orders per day within the entire
collection of datasets.

order type m o min | max ms | os | min, | max, | mg | o4 | ming | maxg
1192 | 34 | 1074 | 1260 | 180 | 6 | 158 | 193 [1012 | 29 | 907 [1067
SO 1183 [45 [988 | 1274 | 1183 | 45 | 988 | 1274 0 0 0 0

Table 2: Total, static (s) and dynamic (d) statistics.

Heuristics

Once a customer order arrives it should be assigned to a ve-
hicle according to some heuristic (or “rule”). Our system,
presented in the next section, aims exactly at learning which
rule is the most appropriate with respect to some fleet and or-
der features. However, in this section, we firstly describe the
dispatching heuristics we designed and implemented. Each
of them observes the currently arrived order and the fleet pa-
rameters, and searches for the best” vehicle according to a
set of additional constraints it imposes.

Minimum Cost Minimum Cost (MC) heuristic calculates
the cost of including a new order along each of the exist-
ing routes, meeting all hard constraints. The increase on the
objective is made up of the additional travel costs for visit-
ing the new locations, the extra expense of a possible waiting

and a certain service at those locations, any additional penal-
ties for late services, and a supplementary cost for possible
after-shift deliveries. Finally, the heuristic selects the vehicle
with minimum extra expenditures.

Balanced The Balanced (B) rule aims to distribute the
overall workload amongst the vehicles. First it computes the
set of vehicles that are able to accommodate the new de-
mand, meeting all the hard and soft constraints. If this set
is empty then we consider the set of all adequate vehicles
(i.e. the ones with enough free rack-space so they can ac-
commodate the new load). For every such vehicle from this
set we compute its future planned work and consider those
with minimal such amount. The rule then selects the driver
who can serve the new order with minimum outlay.

Current Orders Current Orders (CO) rule uses a Vehi-
cle Routing solver to entirely re-route and re-schedule the
curently known orders whenever a new demand arrives at
the system. This reordering process consists of (1) allocating
a vehicle for the new demand, (2) removing already serviced
orders and (3) leave the demands whose packages have only
been picked up to the same vehicles as they must be deliv-
ered by them (i.e. because packages cannot be transferred
between vehicles or stored at some intermediate locations).
On the contrary, if a package has not been picked up it could
be serviced by another driver.

Shift Profitability The Shift Profitability (SP) dispatch-
ing rule aims to maximize the profit gained during the driver
shift in terms of both number of serviced customers and to-
tal execution time. This is achieved by keeping the drivers
busy (assigning more orders to them) for more or less the
same amount of working horizon according to the current
schedule. This heuristic meets the end-shift time boundary.
It also attempts to assign the new requests into some waiting
time windows along a vehicle route satisfying the hard con-
straints. Hence, we compute a penalty if a parcel is picked
up or delivered late. In this way the rule evaluates the routes
and chooses the one with minimum value.

Geographical Closeness The time features of the current
schedule are meaningful fleet characteristics, however, the
vehicle spatial distribution is also important. The Geograph-
ical Closeness (GC) heuristic takes into account exactly
this distribution. The rule computes the subset of vehicles,
nearby both locations of the new order and tries to send such
a candidate, satisfying all soft constraints. The search starts
with predefined areas around the new locations and if no ad-
equate vehicle is found these areas are iteratively enlarged
until some boundary is reached. In the latter case the set of
all vehicles is considered and the rule recommends the driver
able to handle the new demands with minimum extra costs.

Minimize Vehicles All of the previous heuristics mini-
mize in some way the additional costs incurred whenever
a new order occurs, allowing the use of as many vehicles
as convenient. Hence, the possibility of activating an empty
vehicle is quite high. In reality this would mean additional
and undesired driver costs. Moreover, sometimes we prefer
paying more and assigning the new parcels to a moving ve-

hicle to contracting a new driver. This motivated us to de-
sign the Minimize Vehicles (MV) heuristic. It minimizes the
number of vehicles still avoiding unwanted lateness. In other
words, whenever a new order arrives the rule considers only
the moving vehicles and only if none of them can accommo-
date that service, the rule recommends an empty vehicle.

Immediate Cost The Immediate Cost (IC) heuristic takes
into account the time a particular order stays in the system.
Its goal is to minimize this time whenever a new demand
occurs. This is ensured by assigning the new demands to a
route where it can be executed as soon as possible. The only
constraints are the vehicle shift times as well as the hard and
soft constraints at the locations of the new order. Finally,
the route with minimum additional costs is returned. Note
that this rule allows us to estimate the immediate reward of
assigning the new order, whereas all of the remaining rules
somehow minimize the aditional costs, frequently resulting
in later services.

Random The last implemented dispatching rule is the
Random (R) heuristic. It selects one of the previous heuris-
tics in an uniform fashion and activates it whenever a new
order arrives at the system.

We conclude this part with a note on the worst-case the-
oretical complexity of the implemented algorithms. Let us
denote by f the fleet size (i.e. 192 in our case), by nyax the
maximal number of packages currently assigned to a vehi-
cle and by [the complexity that a Vehicle Routing solver
achieves when assigns a new order to the current schedule.
Normally the latter is polynomially related to f and 7.
The Current Orders heuristic is the only rule that requires
time proportional to (I * (f * nyax)) supposing that the
solver runs for at most some fixed amount of time irrespec-
tive of the problem size. The remaining heuristics can be
implemented with polynomial complexity of ©(f * n2,

ax)-

Heuristic evaluation

In order to assess the decisions made by the heuristics we
use a novel combination of machine learning and optimisa-
tion, in which a vehicle routing solver is called post hoc to
measure the quality of individual decisions. Indigo is a Vehi-
cle Routing solver that, given a problem specification, finds
a schedule that is close to the optimal one. Finding the op-
timal schedule is a challenging optimisation problem above
NP. The solver is randomized so it may return a slightly dif-
ferent schedule when run a second time with the same prob-
lem formulation. This solver is a complex combination of
simple insert and local-search methodologies. Each sched-
ule produced with Indigo is called a suboptimal schedule. It
is a list of timetables (i.e. one per vehicle) of location as-
signments equiped with commodity information. Each such
assignment is called suboptimal assignment. To evaluate the
heuristic decisions let us have such a schedule and fix the
orders that had been requested before a given demand has
entered the system. Then we apply each rule over this “’par-
tial” suboptimal schedule together with the new order and
compare its output with respect to 2 binary valuation crite-
ria : (1) precise vehicle measure, which takes 1 whenever a
decision coincides with the suboptimal vehicle assignment

and (2) vehicle type measure returns 1 if the recommended
vehicle is of the same type as the vehicle accommodating
that order in the suboptimal schedule or there is a vehicle in
this schedule that is geographically near by the suboptimal
assigned and has the same type as the recommended. If any
of the measures produces 1 we call that heuristic decision
correct, otherwise it is incorrect. We collected these recom-
mendations for all real orders in datasets 1-100.

The rules were verified on top of two pooling strategies.
During the day many customer demands occur and it may
be beneficial to reoptimize the currently present orders in
the system at some time instances. Thus, a pooling strategy
provides exactly a scenario in which such updates are per-
formed. We assume once pooling strategy in which we ob-
serve the entire working time horizon (5 am. - 7 p.m.) and
we also consider time-zones pooling strategy that is based
on the notion of time slices (Kilby, Prosser, and Shaw 1998).
These are defined using the order arrival time distribution
aiming to cut the entire daily information into smaller por-
tions suitable for processing by the system. The time in-
stances in this pooling strategy that we select are 5 a.m.,
9 am., 11 am., 1 pm., 3 p.m. and 7 p.m.. In both strate-
gies we used Indigo to produce 10 suboptimal schedules at
the reoptimization points, 5 of which consist of real orders
only and the other 5 also containing simulated ones. We can
view the intermediate schedules as local incomplete oracles
having partial information with respect to the entire order
sequence for the particular day and the final schedules as
global complete oracles knowing all the suboptimal assign-
ments for all the orders. Hence, the heuristic correctness can
be measured with respect to the different local and global or-
acles. Note that the ”global” comparison is important as in a
final schedule the entire information is known and the most
reasonable decisions could have been made. However, we
believe that considering also the ”local” comparisons would
allow us to learn the policies of the local oracles (Riedmiller
and Riedmiller 1999).

Results

In this section we report some of the results obtained in once
and fime-zones. Although, more statistics can be shown, here
we leave many out for the sake of simplicity and concentrate
on the major ones.

Time performance Table 3 shows the heuristic time per-
formance in the cases when only real demands are present
(RO) and there are also simulated orders (RO+SO).

orders MC B SP CO GC IC MV R
RO 3329 | 2769 | 10.73 | >2% 107 [1252 | 9.15 | 27.97 | 1827
RO+SO | 116.44 | 100.85 | 1533 | =3« 107 | 27.8 | 15.57 | 91.93 | 54.31

Table 3: Once strategy : heuristic average time performance
in milliseconds.

The numbers in the second row are higher due to the
increased number of client orders (i.e. real and simulated
ones), which implies relatively longer vehicle routes. The
latter increases the search for the ’best” candidate each rule
performs and, hence, reflects on its execution CPU time.

Correctness Table 4 contains some correctness statistics
obtained in once scenario. Recall, we have two valuation
measures, two types of orders and eight dispatching rules.
The results are averaged by the datasets 1-100 (i.e. = 1000
dynamic orders per dataset).

RO RO+SO
Rule | precise | type | precise | type
MC 293 674 265 703
B 6 403 2 450
SP 38 577 39 654
CoO 581 874 575 910
GC 88 625 77 650
IC 75 616 43 661
MV 303 666 281 698
R 101 571 86 615

Table 4: Once strategy : global valuation statistics.

Notice that all the values are obtained with respect to
Indigo-schedules. This oracle is just a complex heuristic
and, consequently, the fact that a rule has low (e.g. B-
heuristic with less than 10 hits) or high (e.g. M'V-heuristic
with more than 280 hits) value of correct decisions with re-
spect to these schedules does not imply that it would achieve
the same results with respect to another Vehicle Routing ora-
cle. It simply means that the features considered by the rules
are not nessesarily observed by Indigo when constructing
schedules. Therefore, we keep all the rules in our further ex-
periments except CO. It performed with the highest correct
values, but has a prohibitively expensive execution time.

The use of simulated orders keeps the drivers busier and
apparently the values for the precise (type) measure decrease
(increase). The latter means that, when anticipating any fu-
ture orders, the chance for a rule to "hit” the precise vehicle
(correct vehicle type) decreases (increases).

RO RO+SO
Rule | precise | type | precise | type
MC 347 591 273 628
B 5 388 2 399
SpP 48 551 45 593
Cco 615 731 597 652
GC 89 554 80 582
IC 78 581 46 616
MV 360 581 291 614
R 113 525 89 554

Table 5: Time-zones strategy : global valuation statistics.

In Table 5 we also present the results obtained during
time-zones strategy. Dividing the time horizon into slices re-
sults in higher precise hits (except B-heuristic) than in once.
On the contrary, the fype-related hits decrease. A partial rea-
son for that can be that local oracles produce schedules for
smaller number of orders than the global one and Indigo
takes this into account by using different types of vehicles.

System

This section presents the architecture of a system we de-
signed that is able to select a rule given current parameters
of the new order and the fleet. We first present this system
in Figure 3. It works in cycles that can be describes as fol-
lows : it (1) receives the current schedule S and a new order
0, (2) extracts the schedule (F(.S)) and order (F(0)) fea-
tures, (3) gives these as input parameters to a neural network,
which uses a particular model to rank the dispatching heuris-
tics (OutputFeatures) appropriately, (4) uses an ad-hoc rule
selection procedure (Policy) based on this ranking, (5) ap-
plies the selected heuristic (Action) followed by an insertion
(Update) of the new order o into the schedule .S, obtaining a
new schedule S’. Then the system waits until the next order
when S’ is considered as the current schedule. Our system
halts at the end of the working day.

—1 Update Action
{ s] {F(5)] Artificial
Newral Output Poli
UT olic
eura Features Y
{ o] {F(0)] Network

Figure 3: Recommendation system architecture.

We used cascade training to build a neural model for each
pooling strategy. As we study a new problem we believe that
adopting a dynamic training would better fit the problem de-
scription unless we know in advance a neural network struc-
ture that best suits these kind of problems. We also imple-
ment four dispatching policies based on the output features
of the networks. Some of the results obtained are presented
at the end of this section.

Neural Models

The dispatching system uses a neural network, which takes
inputs describing the new order o and the current schedule
S. The first group F'(o) consists of : (1) period of the day T’
([1,4]) when o arrives, (2) number of pallets P ([1,10]) and
(3) weight W ([1,10000]) describing o, (4) minimum vehicle
type V' ([1,14]), which is able to accommodate o and (5) the
degree of dynamicity D ([1,10]), which expresses how many
orders have arrived at the same moment as o has. Next, we
select schedule features F'(.S) that depend on the character-
istics of o and are as follows : (6) number of active vehicles
A ([1,192]), (7) free pallet capacity F'P A in the active vehi-
cles ([0, 480]), (8) free weight capacity F'W A in the active
vehicles ([1, 420962]), (9) number of vehicles C' ([1, 192]),
which are near by o, (10) free pallet capacity F'PC in these
vehicles ([0, 480]) and (11) free weight capacity FWC' in
these vehicles ([1, 420962]). All the ranges in the brackets
are the feature domains. In total we consider 11 features de-
scribing the current state of our problem.

Since we have two pooling strategies (i.e. once and time-
zones) we built two types of datasets, which are then used

to build different neural models. In Table 6 we show an ex-
ample of the output features the networks learn when given
the following state description : 7' =1, P = 0, W = 344,
V=5 D=1 A =154, FPA = 93, FWA = 55868,
C =2 FPC=3,FWC =917.

Global Local

Rule | precise | type | type
MC 0 7 6
B 0 10 6
SP 0 7 6
GC 1 2 2
IC 1 6 7
MV 2 2 0
R 0 6 6

Table 6: Output features.

Notice that the comparison was done with respect to 10
suboptimal schedules and, thus, the numbers in Table 6
vary between 0 and 10. In addition, we learn the vehicle
types able to accommodate the respective order according
to the schedules with and without simulated errands. Learn-
ing these separately may result in a system recommendation
that sends a bigger vehicle than the suboptimal one due to
the implicitly incorporated prediction that some new orders
would occur in the direction of the locations of the currently
new order. Finally, each dataset contains all input features,
all output features and the two recommended vehicle type
features.

Ad-hoc policies

After the networks are trained, they are able to rank the
dispatch heuristics given a particular input parameter con-
figuration. Then a predefined policy selects a heuristic. Let
O = (hy, hy, hy) be an output vector where hy,, h, and hy
are the value vectors of the precise, type global and fype local
heuristic features (see Table 6). Then we define the follow-
ing four ad-hoc policies:

e mpc(0) = ggg(hip(i) + By (i)

o Tpy(O) = mi

min (i (3) + g (1)

o mpLc(0) = ggg(@(i) + hi(i) + hy(i))

o Tpg(0) = }glé%(hp(l) + M (i) + hy (7)),

The first policy wps selects the rule with the maximal
joint sum of the two global features. On the contrary, 7,
prefers the heuristic with the minimal such value. Policy
mprc dispatches the new order according to the rule achiev-
ing the maximal joint sum of all the measures and the last
action-mapping (i.e. ;) selects the heuristic with the min-
imal such score. For instance, if we consider Table 6 again,
then 7pg = B (i.e. with sum of 10), m,, = GC (3),
TPLG — B (16) and Tplg = MV (4)

Results

The system introduced ran over 30 datasets of orders (= 30
000 orders). In what follows we present some of the results
obtained in once and time-zones. As we could not compare
these with either the real dispatch decisions or other online
system, Table 7 and 8 show the costs obtained using Indigo
and pursuing the policies PG, pg, PLG and plg.

Indigo PG pg PLG plg
driver wages | 7878.25 | 8226.28 | 7718.46 | 8130.49 | 7303.48
vehicle costs | 1314.21 | 3631.33 | 3923.69 | 3585.26 | 3501.09
penalties 0.00 134276 | 9088.96 | 3688.95 | 1544.94
final 9192.46 | 13200.37 | 20731.11 | 15404.70 | 12349.51

Table 7: Policy costs in once.

We can observe that the first two best results are 34%
(plg) and 44% (PG) worse than the ~offline” costs achieved
when Indigo knows all the orders in advance. These scores
are also motivating as running Indigo each time a new order
occurs would be a time-consuming process (= 5 - 10 min)
that could result in customer dissatisfaction and even possi-
ble service losses. As opposed to that, our system includes
the new order into the current schedule in milliseconds.

In Table 8 we report the same statistics for the time slice 1
p.m. - 3 p.m.. In this scenario Indigo knows only the orders
till 3 p.m. which can be a reason why the results obtained
pursuing 7,4 and 7,4 are slightly better. Another reason for
that can be that these policies select mostly rules with min-
imal scores (e.g. B). The last means that a new vehicle is
decided more likely, however, Indigo does not observe this
as part of its objectives and tries to use the moving vehicles
instead. The cost in the rest time slices reaches up to 16.5%
and 11% more than the Indigo-cost following 7, and 7y,
and up to 24% and 27% following mpg and Tprq. In this
pooling setting we can even decide how many drivers to con-
tract and to release home in the different slices of the day.

Indigo PG pg PLG plg
driver wages | 7242.01 | 7233.16 | 6998.44 | 7233.31 | 7002.42
vehicle costs | 1189.87 | 1481.55 | 1248.63 | 1493.83 | 1208.48

penalties 0.00 198.78 | 100.61 | 233.83 8.83
final 8431.88 | 8913.49 | 8347.68 | 8960.97 | 8219.73

Table 8: Policy costs in time-zones between 1 and 3 p.m..

Table 9 shows another set ot statistics regarding the sched-
ules built pursuing our policies such as driver active perfor-
mance, total waiting time, etc. As we can see the policy with
the lowest cost achieved (i.e. plg) uses 177 vehicles, which
might be inappropriate in some days, but has performed min-
imum late services (80). Policies PG and P LG use reason-
ably smaller number of vehicles (i.e. 98 and 96) to accom-
modate all the orders. A benefit of all action-mappings is the
significant reduction of the vehicle waiting time.

Summary and future directions

We have considered an instance of an Online Pickup and
Delivery Problem assuming real-time fleet and customer,
time and other constraints. Taking these into account we im-
plemented eight dispatch heuristics selecting most adequate

Indigo | PG pg PLG | plg
active vehicles 68 98 178 96 177
requests/driver 18 13 7 13 7
waiting time[h] | 76.40 | 9.86 | 21.54 | 11.18 | 18.37
late customers 0 209 148 380 80

Table 9: Policy statistics in once.

vehicles to accommodate the arriving orders. We generated
230 datasets, specifically adapted to our problem. We trained
several neural networks for two pooling strategies and de-
signed a system that outputs the best rule to be applied ac-
cording to one of four predefined policies. Although, in the
once policy, our online system achieved 34% worse results
than Indigo, in the time-zones policy, it outperformed the or-
acle during some time slices. Based on the results obtained
we are considering to improve the heuristic selection pro-
cedure by possibly defining more policies and, in addition,
also by incorporating several constraints into the decision-
making process, namely: (1) additional commodities (e.g.
volume, length), (2) vehicle diversion, (3) cross-utilization
of vehicles, (4) using real-time distances, (5) traffic conges-
tion and (6) multiple-dispatcher fleet management.

Acknowledgments
e Martin Aleksandrov was partially supported by NICTA.

e Toby Walsh was supported by Asian Office of Aerospace
Research & Development (AOARD, grant FA2386-12-1-
4056).

References

Beham, A.; Kofler, M.; Wagner, S.; and Affenzeller, M.
2009. Agent-based simulation of dispatching rules in dy-
namic pickup and delivery problems. LINDI 2:1-6.

Cortés, C. E.; Nufiez, A.; and Séez, D. 2008. Hybrid adap-
tive predictive control for a dynamic pickup and delivery
problem including traffic congestion. IJACSP 22(2):103—
123.

Gendreau, M.; Guertin, F.; Potvin, J.; and Séguin, R. 2006.
Neighborhood search heuristics for a dynamic vehicle dis-
patching problem with pick-ups and deliveries. TR Part C
14(3):157-174.

Irnich, S. 2000. A multi-depot pickup and delivery prob-
lem with a single hub and heterogeneous vehicles. EJOR
122(2):310-328.

Jaillet, P., and Wagner, M. R. 2008. Online vehicle routing
problems: A survey. OR/CSIS 43(2):221-237.

Kilby, P.; Prosser, P.; and Shaw, P. 1998. Dynamic vrps : A
study of scenarios. APES 53.

Mitrovi¢-Minié, S. 1998. Pickup and delivery problem with
time windows: A survey. SFU CMPT TR 12:669-685.
Riedmiller, S. C., and Riedmiller, M. A. 1999. A neural

reinforcement learning approach to learn local dispatching
policies in production scheduling. IJCAI 2:764-771.

