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Abstract
We consider a fair division setting in which items
arrive one by one and are allocated to agents via
two existing mechanisms: LIKE and BALANCED
LIKE. The LIKE mechanism is strategy-proof
whereas the BALANCED LIKE mechanism is not.
Whilst LIKE is strategy-proof, we show that it is
not group strategy-proof. Indeed, our first main re-
sult is that no online mechanism is group strategy-
proof. We then focus on pure Nash equilibria of
these two mechanisms. Our second main result is
that computing a pure Nash equilibrium is tractable
for LIKE and intractable for BALANCED LIKE. Our
third main result is that there could be multiple such
profiles and counting them is also intractable even
when we restrict our attention to equilibria with a
specific property (e.g. envy-freeness).

1 Introduction
Fair division is a fundamental problem our society faces to-
day. It is even more challenging when the fair division deci-
sions are made online often with only partial knowledge. For
example, a food bank allocates food as it is donated. As a
second example, an organ matching program allocates newly
donated organs of deceased patients to transplant recipients
within a few hours of their arrival. We cannot wait for more
items to arrive before allocating existing items to agents. We
focus here on a simple online fair division model introduced
in [Walsh, 2014] where a new item arrives at each time step.

Fair division of indivisible items without monetary trans-
fers is a particularly difficult case because items cannot be
divided to satisfy multiple agents and because we cannot use
money to compensate agents receiving less utility. Compet-
ing agents are then likely to behave strategically, especially
if they have some information about what items remain to
be allocated. We study here such strategic behavior for two
promising mechanisms for online fair division: LIKE and
BALANCED LIKE [Walsh, 2015]. Since our fair division
problem is online, we typically have some uncertainty about
items yet to arrive. This limits strategic behavior. However,
even with limited information, agents may still be able to act
strategically. For instance, with LIKE strategic behavior de-
pends just on the items to arrive and not their arrival order.

We look at these two simple mechanisms for multiple rea-
sons. They satisfy many nice axiomatic properties [Aleksan-
drov et al., 2015]. For example, they are randomized and this
helps them achieve properties such as fairness, anonymity and
equal treatment of equals. The LIKE mechanism is strategy-
proof, envy-free ex ante but is not fair ex post. In particular,
one agent can have unbounded envy for another or even not
receive a single item. LIKE characterizes envy-freeness ex
ante in general and is one of the few strategy-proof mecha-
nisms. On the other hand, BALANCED LIKE bounds the envy
and guarantees that agents will be allocated similar numbers
of items but it is not strategy-proof. Neither mechanism is
Pareto efficient in general but both become so with binary
utilities. Moreover, both LIKE and BALANCED LIKE are the
most competitive mechanisms possible from an egalitarian
and worst-case perspective. We, therefore, turn attention to
questions around their Nash equilibria.

Nash equilibrium is a game-theoretic concept commonly
used to understand the behavior of competing agents. If there
is a unique pure Nash equilibrium, the main focus is usually
around computational questions. One may also be interested
in what the “best” equilibrium of the game is, or whether a
given pure strategy is played in any equilibrium [Gilboa and
Zemel, 1989]. If there are multiple pure Nash equilibria, the
focus is then shifted to counting questions. One may argue
that it is impossible to have a good overview of all the Nash
equilibria of a game if one cannot even count them. This,
however, does not preclude us from making predictions about
equilibria. In our work, we look at both types of questions.
For example, we compute pure Nash equilibria of both LIKE
and BALANCED LIKE as well as count them.

There are several reasons why we study Nash equilibria
of the one-shot game rather than the subgame perfect Nash
equilibria of the repeated game. From a practical perspective,
these games are typically played as one-shot. It is impractical
to query agents repeatedly as every item arrives so we often
collect their preferences in advance. For example, hundreds
of items arrive in the food bank problem and, for this reason,
charities request food only a few times per day when they
reveal their utilities.

In addition, we may force agents to play the one-shot game
to reduce their strategic options. Nevertheless, the problem
remains online because the items arrive over time, they need
to be allocated promptly and as we do not know in advance
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what items actually will be donated. Our results also suppose
we know utilities. Again, this is often reasonable even though
mechanisms like LIKE and BALANCED LIKE are ordinal. For
instance, in the food bank problem, the utility of liked items
might simply be their retail price. This is public information.
In the organ matching problem, doctors have a function to
compute the utility of a matching based on age and medical
history. This is again public information.

Computing equilibria is more relevant for agent control
when agents behave strategically. Counting equilibria is more
relevant for chair control when the chair wants to enforce a
Pareto efficient and envy-free equilibrium once the items start
to arrive. To achieve this, we show that the chair might have to
choose amongst exponentially many such equilibria. Count-
ing complexity is also important if the chair wants to limit
say the envy-freeness of the equilibrium outcome. For exam-
ple, at Harvard Business School, students submit their sincere
preferences for courses and a “proxy draft” mechanism allo-
cates courses to them by using a Pareto efficient equilibrium
strategy [Budish and Cantillon, 2012].

Our contributions: LIKE is strategy-proof whereas BALA-
NCED LIKE is not. Our first result is that no mechanism is
group strategy-proof. These results motivate why we look at
competitive pure Nash equilibria for BALANCED LIKE and
group pure Nash equilibria for LIKE. Our second result is
that computing a pure Nash equilibrium is tractable for LI-
KE and intractable for BALANCED LIKE. Our third result is
that there could be multiple such profiles and counting them
is also intractable in the worst-case. Our intractability results
have many interesting consequences. For example, we show
that deciding whether an equilibrium with egalitarian welfare
(i.e. minimum expected utility) of at least k is intractable.
As a second example, we show that counting envy-free pure
Nash equilibria is also computationally hard.

2 Preliminaries
An instance I of an online allocation problem has (1) agents
a1, . . . , an, (2) indivisible items o1, . . . , om, (3) private utility
uij for each agent ai and each item oj and (4) ordering o of
the items. We consider binary utilities and general rational
utilities. We say that agent ai likes item oj if uij > 0.

Online setting: The allocation proceeds in rounds. At
round j, we suppose that item oj when each agent ai places a
rational bid vij for item oj . A mechanism now allocates item
oj to an agent supposing no information about future items.

We consider the LIKE and BALANCED LIKE from [Alek-
sandrov et al., 2015]. Each of them allocates item oj uni-
formly at random to a feasible agent. With LIKE, agent ai is
feasible for item oj if vij > 0. With BALANCED LIKE, agent
ai is feasible for item oj if vij > 0 and ai has fewest items
amongst those agents that bid positively for item oj .

Pure Nash equilibria: Let vi = (vi1, . . . , vim) denote
the vector of bids that agent ai report for all items and
vi,−j the sub-vector of vi without bid vij . Also, let V de-
note the bid matrix (i.e. bidding profile) and V−i the bid
sub-matrix of V without vi. Further, let ui(vi, V−i, o) de-
note the expected utility of agent ai for all items. We say
that v1i is a strict best response vector of agent ai to V−i if

ui(v
1
i , V−i, o) > ui(v

2
i , V−i, o) for each vector v2i 6= v1i . We

say that v1i is a weak best response vector of agent ai to V−i
if ui(v1i , V−i, o) = ui(v

2
i , V−i, o) for some vector v2i 6= v1i

and ui(v1i , V−i, o) ≥ ui(v
3
i , V−i, o) for each vector v3i 6= v1i .

We next define pure Nash equilibria. A bidding matrix V is
a strict pure Nash equilibrium if all bidding vectors in V are
strict pure best responses, and V is a weak pure Nash equi-
librium if some vectors in V are weak best responses and the
other vectors in V are strict best responses. Throughout the
paper, we consider monotone pure Nash equilibria in which
each agent bids their positively or zero for each item they like,
and bids zero for each item they dislike.

Agent a envies (ex ante) ex post agent b if a’s (expected)
utility of b’s (expected) allocation is greater than a’s (ex-
pected) utility of a’s (expected) allocation. A bidding pro-
file is envy-free (ex ante) ex post for a mechanism if no agent
envies (ex ante) ex post another one given the (expected) al-
location returned by the mechanism on this profile. A bid-
ding profile is (ex ante) ex post Pareto efficient for a mecha-
nism if the (expected) allocation returned by the mechanism
on this profile is Pareto optimal. A mechanism is strategy-
proof if, with complete information, no agent can misreport
their sincere utilities for items and thus strictly increase their
(expected) utility. A mechanism is group strategy-proof if,
with complete information, no set (or no group) of agents can
misreport their sincere utilities and thus strictly increase their
group expected outcome (i.e. the sum of the expected utilities
of the agents in the group).

We show our hardness results using notions from compu-
tational complexity and graph theory.

Computational complexity: We use complexity classes
such as P, NP, coNP and #P as well as mappings such as
Karp, Turing and parsimonious reductions [Garey and John-
son, 1979; Turing, 1936; Valiant, 1979].

Graph theory: Let G be a bipartite graph. A matching in
G is a set of vertex-disjoint edges. We say that it matches a
vertex if there is an edge in it that is incident with the vertex.
A matching is perfect if it matches all vertices in G.

We report our results for strategy-proofness in Section 3.
We then study how to compute equilibria in Section 4. In
Section 5 and Section 6, we show non-uniqueness of equilib-
ria and hardness of counting them. We conclude in Section 7.

3 Manipulable Mechanisms
We know that the LIKE mechanism is strategy-proof and the
BALANCED LIKE mechanism is not strategy-proof [Aleksan-
drov et al., 2015]. We, therefore, proceed with group manip-
ulations. In our food allocation problem, charities in the same
region might decide to bid together for all items they like in
common because they might exchange these items post the
allocation. In our organ matching problem, hospitals in the
same city might decide to report common patients multiple
times on a national level and thus bias the national match-
ing of organs in their favor. Group strategy-proof mecha-
nisms exist and are successfully characterized in many do-
mains [Martı́nez et al., 2004; Pountourakis and Vidali, 2012].
Unfortunately, in online fair division, no mechanism is group
strategy-proof in general.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

43



Theorem 1 With general utilities, no mechanism is group
strategy-proof.
Proof. Consider two agents and one item. Suppose the item
is not always allocated deterministically to the agent bidding
most for it. Then, from a group strategy perspective, the two
agents can improve the group outcome by having only the
agent with greatest utility bidding for the item. Hence, to
be group strategy-proof, the item must be deterministically
allocated to agent bidding most for it. However, the under-
bidder can now improve their individual outcome by increas-
ing their bid to exceed the current winner’s bid. Thus, deter-
ministically allocating item to agent bidding most for it is not
strategy-proof and thus not group strategy-proof.2

If we use LIKE in the proof of Theorem 1, we imme-
diately conclude that this mechanism is not group strategy-
proof even with 0/1/2 utilities. Surprisingly, however, it be-
comes group strategy-proof with 0/1 utilities.
Theorem 2 With 0/1 utilities, the LIKE mechanism is group
strategy-proof.
Proof. Consider a group of agents. Note that the expected
outcome of the group for each item oj is independent of their
bidding strategies for items o1 to oj−1. Each joint bidding
strategy of the agents from the group can be represented as
a sequence of individual agent strategies. There are multiple
such sequences that correspond to a given joint bidding strat-
egy. The group outcome increases with LIKE if the next two
conditions hold. For each such sequence and each individual
bidding strategy in it, we have that the group expected out-
come does not decrease. For each such sequence and some
individual bidding strategy in it, we have that the group ex-
pected outcome increases. We show that no such strictly in-
creasing individual strategy could exist. Let us pick an agent
from the group and an item, say a1 and o1. WLOG, suppose
that o1 is liked by k agents from the group, and by l agents in
total. If a1 sincerely dislikes item o1 and strategically bids 1
for it, l is in [k, n−1] and the decrease from the sincere group
outcome is k/[l · (l + 1)]. If a1 sincerely likes item o1 and
strategically bids 0 for it, l is in [k, n] and the decrease from
the sincere group outcome is (l − k)/[l · (l − 1)]. Both devi-
ations are non-negative. Hence, sincere bidding dominates.2

By Theorem 2, it quickly follows that the sincere strategy
is dominant for a group of agents and for an item if the agents
from the group that like the item have the same utility for it.
Corollary 1 With general utilities, the LIKE mechanism is
group strategy-proof if, for each group G and item oj , each
agent from G that likes oj has utility uGj for it.

We next report one interesting observation about group
strategy-proofness. Envy-freeness ex ante is incompatible
with ex ante Pareto efficiency in general.
Observation 1 With general utilities, no mechanism is group
strategy-proof and envy-free ex ante, or group strategy-proof
and ex ante Pareto efficient even with randomisation.

The LIKE mechanism is group strategy-proof and envy-
free ex ante with 0/1 utilities but not even bounded envy-free
ex post. In contrast, BALANCED LIKE is envy-free ex ante
and bounded envy-free ex post but not even strategy-proof.
Both of them are Pareto efficient with 0/1 utilities.

4 Computing Pure Nash Equilibria
We show that there could be a unique weak or strict pure Nash
equilibrium and then that computing one is intractable.
Example 1 (Unique weak pure Nash equilibrium) Con-
sider items o1 and o2 and agents a1 and a2. Suppose that
a1 likes o1 with 1 and o2 with 2, and a2 likes o1 with 2 and
o2 with 1. Let us run the BALANCED LIKE mechanism. The
sincere profile is not a pure Nash equilibrium. By bidding
sincerely, each agent receives expected utility of 3/2. By bid-
ding strategically 0 for item o1, each agent receives strictly
higher expected utility of 2. This is the only pure Nash equi-
librium which happens to be weak because the agents receive
the same outcomes if a2 reports 0 for o2 in it. 2
Example 2 (Unique strict pure Nash equilibrium) Con-
sider the instance in the proof of Theorem 2 from [Aleksan-
drov et al., 2015]. It has a unique pure Nash equilibrium
which happens to be strict.2

We further study the following computational problem for
an instance and a mechanism.

PURE NASH EQUILIBRIUM
Input: instance A and mechanismM
Output: a pure Nash equilibrium of A withM

If we can solve this problem in polynomial time, then we
can solve its decision version in polynomial time. The de-
cision version asks whether there is a pure Nash equilibrium
of the given instance with the given mechanism. We show
that the decision version is intractable for BALANCED LI-
KE and therefore the computational problem is intractable as
well. Our Reduction 1 is a Karp mapping from the minimum
size maximal matching problem in 3-regular bipartite graphs
which is NP-complete [Demange and Ekim, 2008].
Reduction 1 Let R be a 3-regular bipartite graph with
vertices u1, . . . , uN and v1, . . . , vN . For each vertex ui,
let vi1, vi2, vi3 denote the vertices connected to it and
e3·(i−1)+1 = (ui, vi1), e3·(i−1)+2 = (ui, vi2), e3·(i−1)+3 =
(ui, vi3) the edges incident with it. Each edge ek can be
represented as (ui, vj) for some ui ∈ {u1, . . . , uN} and
vj ∈ {vi1, vi2, vi3}. We construct instance IR as follows:
• Agents: 1 agent ak per edge ek, agents b and c and

agents d1 to d2·(N−r) (i.e. 5 ·N − 2 · r + 2 agents),
• Items: 1 item per vertex vj , 2 items ui1 and ui2 per

vertex ui, 2 more items wi1 and wi2 per vertex ui and
items x1 to xN−r, y (i.e. 6 ·N − r + 1 items),
• Non-zero Utilities each agent ak has utility of 1 for

items vj , ui1, ui2, wi1, wi2 and x1 to xN−r; agent b has
utility of 1 for items xN−r and y; agent c has utility of 1
for item y only; each agent dk has utility of 1 for u11, u12
to uN1, uN2, and
• Ordering: o = (u11u12 . . . uN1uN2v1 . . . vNw11w12

. . . wN1wN2x1 . . . xN−ry).
The completely detailed proofs of the next technical Lem-

mas 1 and 2 are omitted for reasons of space.
Lemma 1 There is a maximal matching in R of cardinality
at most r iff, with the BALANCED LIKE mechanism, agent b
receives item y in IR with probability greater than zero.
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Lemma 2 With the BALANCED LIKE mechanism, the sin-
cere profile of IR is a pure Nash equilibrium.
Proof sketch. Suppose the sincere profile is not a pure Nash
equilibrium. Consequently, there is an agent that receives
strictly higher expected utility by reporting zeros for items
they sincerely like supposing the other agent strategies are the
sincere ones. We consider four cases. In the first one, suppose
this is agent a1. There is a symmetry in the preferences of
agents a1, a2, a3, and each other triplet of a’s agents. There is
another symmetry in the preferences of agents ai, aj , ak such
that all like item vh for each h. Based on these symmetries,
we obtained that agent ak is sincere iff agent ai is sincere, and
that agent a1 is strictly sincere. In the second case, suppose
this is agent b. They receive outcome of p+ (1− p) · (1/2) if
they bid 1 for xN−r, y, 1/2 if they bid 1 only for y, p > 0 if
they bid 1 only for xN−r, and 0 if they do not bid for items.
Sincerity dominates. In the third case, suppose this is agent
c. They receive p + (1 − p) · (1/2) if they bid 1 for y, and
0 otherwise. Sincerity dominates. In the fourth case, suppose
this is agent d1. There is a symmetry in the preferences of
agents d1 to d2·(N−r). Based on it, we obtained that agent dk
is sincere iff agent di is sincere, and that agent d1 is strictly
sincere. 2
Lemma 3 With the BALANCED LIKE mechanism, there is at
least one more pure Nash equilibria of IR besides the sincere
profile iff agent b receives item y in IR with probability zero.
Proof. If agent b receives item y in IR with probability
0, then let us substitute their sincere bid of 1 for item y with
their strategic bid of 0 for this item. The new profile is another
pure Nash equilibrium in which all agents receive exactly the
same outcomes as in the sincere profile. If there is at least one
more pure Nash equilibrium of IR besides the sincere profile,
then it must be the case that agent b receives item y with zero
probability in the sincere profile. This follows because each
other agent is strictly sincere by Lemma 2.2

There are many hardness implications under Turing reduc-
tions from Lemmas 1, 2 and 3. There is a strict pure Nash
equilibrium of IR iff the sincere profile is a strict pure Nash
equilibrium. There is a weak pure Nash equilibrium of IR
iff the sincere profile is not a strict pure Nash equilibrium.
Hence, there is a weak pure Nash equilibrium of IR iff there
is not a strict pure Nash equilibrium of IR. Further, there is
a pure Nash equilibrium of IR iff there is a weak or a strict
pure Nash equilibrium of IR iff agent b receives item y with
zero or positive probability. Further, there is a unique pure
Nash equilibrium of IR iff the sincere profile is a strict pure
Nash equilibrium. There is a pure Nash equilibrium of IR
with egalitarian welfare at least 1 (achieved by agent c for
item y) iff the sincere profile is a weak pure Nash equilib-
rium. Even more, there is a (weak) strict pure Nash equi-
librium of IR in which agent b bids 1 for item y iff the sin-
cere profile is a (weak) strict pure Nash equilibrium. These
problems have indirect implications to the problem of finding
a Nash equilibrium in general [Dickhaut and Kaplan, 1993;
Porter et al., 2008; Sandholm et al., 2005].
Corollary 2 With 0/1 utilities and the BALANCED LIKE
mechanism, problem PURE NASH EQUILIBRIUM is NP-
hard.

We next study group pure Nash equilibria for the LIKE
mechanism. We can view the allocation process with this
mechanism as a repeated game [Tomala, 1998]. This fol-
lows from the fact that this mechanism is Markovian. In each
round j of this repeated game, there is a group pure Nash
equilibrium for the current item oj . The group pure Nash
equilibrium of a game played m rounds is a collection that
has a group pure Nash equilibrium for each item.
Theorem 3 With general utilities and the LIKE mechanism,
problem PURE NASH EQUILIBRIUM is P.
Proof. WLOG, we show that computing a group pure
Nash equilibrium for say item oj is tractable. At step 1,
let us pick a group of agents G. WLOG, suppose that all
agents from G (no agent that dislikes oj can increase the
group outcome ofG by bidding positively for oj), and k other
agents not from G like item oj . We need to compute a set
H ⊆ G such that H = argmaxJ⊆G[(

∑
ai∈J uij)/(|J | +

k)]. Note that maxJ⊆G[(
∑

ai∈J uij)/(|J | + k)] is equal to
maxl∈[0,|G|] maxJl⊆G[(

∑
ai∈Jl

uij)/(l + k)] where l agents
are in Jl. But, then maxJl⊆G[(

∑
ai∈Jl

uij)/(l + k)] is equal
to (maxJl⊆G

∑
ai∈Jl

uij)/(l + k). Finally, the value of
maxJl⊆G

∑
ai∈Jl

uij can be computed in O(n) space and
time for each l. To do so, we just pick l different agents from
G with the first l greatest utilities for item oj . Hence, the set
of agentsH can be computed inO(n2) time. This result holds
for any value of k. The “best” strategy for the agents from G
is that the agents from H bid positively for item oj and the
agents fromG\H bid zero for oj . At step 2, consider next the
set of k agents not fromG that like item oj and another group
F that contains at least one of these agents. Similarly, com-
pute the “best” strategy of the agents from F that like item oj
and are not from G. Repeat step 2 with the remaining agents
not from G and F but that like oj till not more such agents
are left. The “best” strategies converge to a group pure Nash
equilibrium. Interestingly, even though there might be an ex-
ponential number of not necessarily disjoint groups of agents,
our procedure terminates in O(n3) space and time. Hence, a
group pure Nash equilibrium can be computed in O(n3 ·m)
space and time.2

5 Multiple Pure Nash Equilibria
In general, there could be multiple pure Nash equilibria.
Some of these could be strict and some others could be weak.
There also could be payoff equivalent or payoff different pure
Nash equilibria. In fact, the number of weak pure Nash equi-
libria with equal outcomes could be exponential in the num-
ber of agents.
Example 3 (Weak pure Nash equilibria) We consider the
fair division of items o1 to on between agents a1 to an. Sup-
pose that a1 likes each item with utility 1 and each other agent
ai likes only oi with utility 1. With BALANCED LIKE, the sin-
cere bidding strategy is dominant for each agent. However,
agent a1 receives the same expected outcome of 1 if they bid
1 for o1 with probability 1 and, for each of the other n − 1
items, they bid 1 with probability 1 or bid 0 with probability
1. Hence, there are 2n−1 weak pure Nash equilibria that give
the same output as the sincere profile. 2
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Moreover, there could also be exponentially many strict
pure Nash equilibria with unequal outcomes.

Example 4 (Strict pure Nash equilibria) We use n gadgets,
each of 4 agents and 4 items, to construct instanceA with 4n
agents and 4n items that have 2n different strict pure Nash
equilibria. The ith gadget has agents ai1 to ai4 and items
oi1 to oi4. Agent ai1 likes items oi1 and oi4 with 1, item oi2
with 1 + 2i · ε and dislikes item oi3. Agent ai2 likes only
item oi2 with 1. Agent ai3 likes items oi1 and oi4 with 1, item
oi3 with 1 + (2i + 1) · ε and dislikes item oi2. Agent ai4
likes only item oi3 with 1. The items are revealed in ordering
oi = (oi1oi2oi3oi4). Suppose that ε < 1

4·n and we use BA-
LANCED LIKE mechanism. There are two strict pure Nash
equilibria of this gadget if we consider it as an online instance
by itself: (1) agent ai1 bids 0 for item oi1 and all other agents
are sincere, and (2) agent ai3 bids 0 for item oi1 and all other
agents are sincere. These two profiles are different as their
expected allocations are different. The instance A contains
n such gadgets: for i ∈ [1, n], agents ai1 to ai4 and items
oi1 to oi4. The entire ordering of A is (o1 . . . on). The two
strict pure Nash equilibria of each gadget are independent
and different than the two strict pure Nash equilibria of each
other gadget. Hence, A admits 2n different equilibria.2

6 Counting Pure Nash Equilibria
Computing pure Nash equilibria is intractable in general.
Even if we compute a single pure Nash equilibrium, we can-
not be sure that the agents will play according to it simply
because there might be multiple pure Nash equilibria. As a re-
sult, the task of counting (or enumerating) pure Nash equilib-
ria becomes more relevant than simply computing such pro-
files. We hence show that counting equilibria (and therefore
enumerating them) is intractable even when computing a sin-
gle pure Nash equilibrium is tractable.

In particular, we ask questions around counting pure Nash
equilibria with some specific property. For example, how
many profiles are there whose outcome is equal to the out-
come of the sincere profile or to the one of some equilib-
rium? Or, how many equilibria are Pareto efficient or envy-
free? Further, strategic behavior might increase or decrease
the welfare value [Aleksandrov et al., 2015]. But, how many
equilibria maximize the egalitarian welfare e, the utilitarian
welfare u or the Nash n welfare (i.e. the minimum expected
utility of an agent, the sum or the product of the expected
utilities of the agents, respectively)?

We give a single parsimonious reduction from the pop-
ular #P-complete counting perfect matchings problem that
output the number of perfect matchings in a given undi-
rected bipartite graph G. Counting perfect matchings prob-
lem is shown to be #P-hard on 3-regular bipartite graphs
in [Dagum and Luby, 1992]. Our Reduction 2 is very sim-
ple but also insightful because it provides a very tight bound
on the complexity of counting, parameterizing or approxi-
mating pure Nash equilibria (i.e. as many items as agents,
0/1 utilities, each agent likes 3 items, each item is liked by
3 agents, each pair of agents like at most 2 items in com-
mon, the ordering is fixed, etc.) [Jerrum and Sinclair, 1989;
Downey and Fellows, 2013].

Reduction 2 Let R be a 3-regular bipartite graph with
vertices u1, . . . , uN and v1, . . . , vN . For each vertex ui,
let vi1, vi2, vi3 denote the vertices connected to it and
e3·(i−1)+1 = (ui, vi1), e3·(i−1)+2 = (ui, vi2), e3·(i−1)+3 =
(ui, vi3) the edges incident with it. Each edge ek can be
represented as (ui, vj) for some ui ∈ {u1, . . . , uN} and
vj ∈ {vi1, vi2, vi3}. The allocation instance ER is as follows:
• Agents: 1 agent ak per edge ek (i.e. 3 ·N agents),
• Items: 1 item per vertex vj , 2 items ui1, ui2 per vertex
ui (i.e. 3 ·N items),
• Non-zero Utilities each agent ak has utility of 1 for

items vj , ui1, and ui2, and
• Ordering: o = (v1 . . . vNu11u12 . . . uN1uN2).

Theorem 4 Even with 0/1 utilities and BALANCED LIKE,
counting pure Nash equilibria is #P-hard.
Proof. In the sincere profile, it is easy to show that the ex-
pected utility of each agent is equal to 1. In fact, the sincere
profile in ER is a pure Nash equilibrium. Let us next consider
the following perfect profile for each perfect matching in R.
WLOG, for each i ∈ [1, N ], suppose the matching matches
ui to vj which happens to be vi1. The perfect profile that cor-
responds to this matching is as follows: for i ∈ [1, N ], agent
a3·(i−1)+1 bids 1 for items vj , ui1, ui2, and agents a3·(i−1)+2

and a3·(i−1)+3 bid 1 only for items ui1, ui2. There is 1-to-1
correspondence between the perfect matchings in R and the
perfect profiles in ER. Therefore, counting such profile is in-
tractable. Note that computing one of them in ER is tractable
[Hopcroft and Karp, 1973]. Finally, it is easy to show that
each perfect profile is a pure Nash equilibrium in which each
agent receives expected utility of 1.2
Corollary 3 With BALANCED LIKE, counting pure Nash
equilibria that maximize the egalitarian, utilitarian or Nash
welfare is #P-hard.
Proof. For e, each agent in each perfect profile of ER re-
ceives expected utility of 1. Therefore, the value of e in this
profile is 1. We argue that this is the maximum value of this
welfare. To see this, consider any bidding profile in which
some agents receive expected utility more than 1. Hence,
there are some other agents that receive expected utility less
than 1. This is guaranteed because there are as many items as
agents in ER, the utilities are binary, each agent likes at least
one item and each item is liked by at least one agent. As a
result, the sum of the expected utilities of the agents is equal
to n and hence each perfect profile maximizes e. For u, each
perfect profile maximizes it because at least one agent bids for
each item. For n, we argue that the maximum value of this
welfare is 1 and is achieved whenever each agent receives ex-
pected outcome of 1. We highlight the key idea. Consider a
triplet of agents, say a3·(i−1)+1, a3·(i−1)+2 and a3·(i−1)+3,
and a bidding profile in which say a3·(i−1)+1 receives ex-
pected utility greater than 1. We showed that a3·(i−1)+2 or
a3·(i−1)+3 receives expected utility smaller than 1 in such a
profile. The same holds for every triplet of agents. For each
such bidding profile, we obtained that n < 1. Finally, each
agent receives outcome of 1 in all profiles that n = 1. 2
Corollary 4 With BALANCED LIKE, counting pure Nash
equilibria whose outcome is sincere is #P-hard.
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Proof. The result follows immediately because agents in ER
receive expected outcomes of 1 in the sincere profile and in
each perfect profile.2

Corollary 5 With BALANCED LIKE, counting pure bidding
profiles whose outcome is equilibrium is #P-hard.

Proof. Consider the following profile for each perfect pro-
file. For i ∈ [1, N ], agent a3·(i−1)+1 bids 1 for item vj , agent
a3·(i−1)+2 bids 1 for item ui1 and agent a3·(i−1)+3 bids 1 for
item ui2. We call this profile deterministic because a single
agent bids for each item. Each agent receives (expected) util-
ity of 1 in such a deterministic profile. This outcome is equal
to their outcome in the sincere profile and in each perfect pro-
file. However, the deterministic profile is not a pure Nash
equilibria. Agent a3·(i−1)+3 increases their outcome from 1
to 3

2 by bidding 1 instead of 0 for item ui1 supposing we keep
the other bidding strategies fixed.2

Corollary 6 With BALANCED LIKE, counting pure Nash
equilibria whose outcome is Pareto efficient is #P-hard.

Proof. Each perfect profile of ER is Pareto efficient ex post
and ex ante. These profiles are pure Nash equilibria.2

Corollary 7 With BALANCED LIKE, counting pure Nash
equilibria whose outcome is envy-free is #P-hard.

Proof. Each perfect profile of ER is envy-free ex ante be-
cause each agent receives expected utility of 1. Each such
profile is also envy-free ex post because each agent receives
exactly one item in each possible allocation. These profiles
are pure Nash equilibria.2

Counting competitive pure Nash equilibria that are Pareto
efficient or envy-free or maximize the welfares is intractable.
We next count group pure Nash equilibria with these mech-
anisms. By Theorem 4, we conclude that counting group
pure Nash equilibria is #P-hard with BALANCED LIKE even
when each agent is alone in a group. This counting problem
remains intractable for LIKE even with 0/1/2 utilities.

Reduction 3 Given the 3-regular bipartite graph R in Re-
duction 2, construct an online allocation instance FR with
the same set of agents, the same set of items, the same zero
utilities and the same ordering as in ER. Only the non-zero
utilities in FR differ from the ones in ER. For i between 1 and
N and j ∈ {1, 2, 3}, agent a3·(i−1)+j has utility 2 for item
vij if the vertices ui and vij in the graph are matched in some
perfect matching in R and 1 otherwise, and utility 2 for items
ui1 and ui2. To compute such a “coloring” in polynomial
time, we can use a polynomial maximum matching algorithm
such as the one from [Hopcroft and Karp, 1973].

Theorem 5 Even with 0/1/2 utilities and LIKE, counting
group pure Nash equilibria is #P-hard.

Proof. Consider instance FR and suppose that all agents are
in a group. The sincere profile of FR is not a pure Nash equi-
librium. Suppose sincere play. Each agent receives expected
utility 2 if they have cardinal utility 2 for each of the three
items they like, and 5/3 if they have cardinal utility 1 for the
first item they like and 2 for each of the remaining two items.
Suppose next strategic play. Let the agents bid according to

one perfect profile that is defined for FR as for ER in The-
orem 4. Each agent receives expected utility 2 given such a
profile. Hence, the group outcome can only increase. In fact,
such a perfect profile is a group pure Nash equilibrium. 2

Finally, note that each perfect profile of FR in the proof of
Theorem 5 is also Pareto efficient and envy-free whereas the
sincere profile is not. We conclude the next immediate result
for LIKE (or even for BALANCED LIKE).

Corollary 8 With LIKE, counting group pure Nash equilib-
ria whose outcome is Pareto efficient, envy-free or maximizes
the egalitarian, the utilitarian or the Nash welfare is #P-
hard.

7 Related Work and Conclusions
Our work is in-line with many other research works that study
equilibria induced by allocation mechanisms. For example,
the equilibria of the popular probabilistic serial rule are well-
understood [Aziz et al., 2015]. We consider weak and strict
Nash equilibria as in [Shapley and Rigby, 1959] but we re-
stricted ourselves to pure such profiles. The presentation of
our counting results was inspired by the hardness results for
two agents presented in [Conitzer and Sandholm, 2008]. Un-
fortunately, we could not inherit any of these results because
manipulations for two agents are tractable for LIKE and BA-
LANCED LIKE. Our decision problems are similar to other
such problems in stochastic game-theory [Ummels and Wo-
jtczak, 2009].

To conclude, we studied pure Nash equilibria for two allo-
cation mechanisms in a simple online fair division model: LI-
KE and BALANCED LIKE. The LIKE mechanism is strategy-
proof but not group strategy-proof and therefore we studied
its group pure Nash equilibria. These profiles always exist
and are tractable. But, are they always Pareto efficient or
envy-free? The BALANCED LIKE mechanism is not strategy-
proof and therefore we studied its competitive pure Nash
equilibria. These profiles are intractable. It is an interest-
ing future work to consider in more details the case of two
agents. Even more, we want to explore possible parameter-
izations and approximations of these problems. For exam-
ple, a sampling scheme might exist for our counting prob-
lems whose convergence is guaranteed by the Hoeffding’s in-
equality [Sabán and Sethuraman, 2013]. Finally, as our first
next step, we plan to study the induced subgame perfect Nash
equilibria of the repeated game. We also left open the ques-
tion whether there is always a pure Nash equilibrium in such
games for BALANCED LIKE.
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