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Abstract
We consider semi-decentralised fair divisions in the context
of emerging VRPs, where not just the preferences of drivers
play a crucial role, but also the feasibilities of their vehicles.
For such settings, we propose three new fairness notions:
responsive FEF1, responsive FEQX, and responsive FEFX,
which capture the responsiveness of drivers for requests. For
such settings, we also give two new algorithms. Our first al-
gorithm returns responsive FEF1 assignments. Our second al-
gorithm returns responsive FEQX assignments, as well as re-
sponsive FEFX assignments in a practical case.

1 Introduction
Let us consider the classical Vehicle Routing Problem
(VRPs) (Dantzig and Ramser 1959). In this problem, there
is a single vehicle and a set of visit requests. Generalisations
of the VRP consider a fleet of multiple vehicles and a set
of pickup-and-delivery requests (Savelsbergh and Sol 1995).
We initiate a study of emerging VRPs. Applications of such
problems include autonomous vehicles, connected vehicles,
electric vehicles, garbage vehicles, and data-driven logistics.
The 2020 EU Strategy for Sustainable and Smart Mobility
has formulated public mobility Transport Policy Flagships,
according to which the transition to emerging VRPs must
involve the preferences of individuals. One objective in this
strategy is achieving trust. Among explainability and safety,
trust requires that vehicles are used fairly.

In this paper, we provide an early qualitative analysis of
fairness for drivers. We thus propose a fair division assign-
ment model, where a fleet of vehicles and a set of requests
are available in a fixed time interval, and each driver charge
the customer of each given request with some cost. We con-
sider driver-dependent costs (i.e. request costs depend on
drivers) and driver-independent costs for customers. We also
consider additive profits for drivers (i.e. the profit for some
requests is sum of the request costs). Like in many mod-
els for fair division (Brams and Taylor 1996) and fair public
decision making (Conitzer, Freeman, and Shah 2017), addi-
tivity is a common assumption. Unlike many such models,
we consider two additional features: vehicle feasibilities and
driver responsiveness.
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That is, a given vehicle may be feasible or not for a given
request. We model this by using a hard feasibility indicator.
For instance, suppose that a given vehicle is feasible only for
packages that can be loaded inside its trunk, subject to max-
imising the total number of packages. This is known as the
loading problem and it is NP-hard in general (Männel and
Bortfeldt 2018). In this context, if a given request can be
loaded in the trunk of a given vehicle in some solution to the
loading problem, then we set the corresponding feasibility
indicator to one, and else we set it to zero. We partly over-
come such intractabilities by decentralising some of the fea-
sibilities of vehicles and letting their drivers decide whether
they are feasible or not for requests. In addition, we con-
sider the possibility of decentralising not just hard feasibil-
ities of vehicles, but also some of the profit preferences of
their drivers. Indeed, many real-world applications are ac-
tually semi-decentralised. In such applications, drivers can
therefore be responsive or not.

Realistic features such as feasibilities and responsiveness
require that we modify centralised fairness notions and cen-
tralised fairness algorithms so that they reflect the nature
of our model. We do such modifications in our work. Our
model can thus be simulated in centralised, decentralised,
as well as on various Internet and mobile settings, where
some request information is known and some missing infor-
mation is revealed as drivers are prompted for responses. If
drivers respond, then they are online. Otherwise, they are of-
fline until the next time they are prompted for responses. For
example, the dispatchers of Bonds Express often communi-
cate for work with drivers via SMS messages (Aleksandrov
et al. 2013). We next give an outline of our paper.

Outline: We explain our contributions in Section 2 and re-
view related literature in Section 3. We define formally our
model in Section 4. For this model, in Sections 5, 6, and 7,
we show that existing fairness notions such as EF1, EQX,
and EFX need to be modified. In response, we propose three
new notions: responsive FEF1, responsive FEQX, and re-
sponsive FEFX. With driver-dependent costs, we prove in
Section 8 that a responsive FEF1 assignment can be com-
puted in polynomial time and in Section 9 that a respon-
sive FEQX assignment can also be computed in polynomial
time. With driver-independent costs, we give in Section 10 a
similar tractability result for a responsive FEFX assignment.
Finally, we draw our conclusions in Section 11.



2 Contributions
In our assignment model, we let drivers (pre-)submit to the
(central) planner some but possibly not all of their profit
preferences and vehicle feasibilities. For example, Bonds
Express contracts on-demand drivers, and the dispatchers
often do not know all of their preferences, or all of their ve-
hicle feasibilities, for requests (Aleksandrov et al. 2013). If
the planner have complete such information, then the setting
is purely centralised. If they have no such information at all,
then the setting is purely decentralised. Otherwise, the plan-
ner need to decentralise some of the assignment decisions.
We note that the decentralisation of such decisions is chal-
lenging simply because we do not know how drivers might
behave in practice. At this point, our model intersects be-
havioral game theory (Camerer 2003), where rationality is
a key concept that is suitable for settings in which drivers
act in their best interest. In our work, we consider rationality
concepts such as truthfulness and selfishness.

Thus, in our semi-decentralised setting, whenever some
profit preferences or vehicle feasibilities are unknown to the
planner, they send some (at most m) requests to drivers,
and drivers may respond for such requests with such infor-
mation within some (pre-)specified time T ∈ Ω(m). We
assume that drivers are truthful and maximise their profit.
More specifically, if drivers are responsive to a request
they receive, then we assume that their behavior is truthful
and profit-maximising, i.e. supposing that their vehicles are
truthfully feasible for such a request, they reveal information
for some truthfully most profitable among their truthfully
feasible such requests, without changing any (public) pref-
erences and feasibilities, which are known to the planner,
and accounting for any (private) preferences and feasibil-
ities, which are known just to them. Otherwise, we assume
that drivers are unresponsive and cannot service requests un-
til the next time they respond. Drivers can be unresponsive
for various reasons: they depart from and arrive at the mar-
ket at different times; they have made sufficient profit in the
current day and decide to go home earlier; their vehicles are
truthfully infeasible. For such settings, we study fairness for
drivers with additive profits.

In fair division of goods, three fairness notions are “envy-
freeness up to some good” (EF1) (Budish 2011), “equitabil-
ity up to every good” (EQX) (Freeman et al. 2019), and
“envy-freeness up to every good” (EFX) (Caragiannis et al.
2019). In our model, these notions ignore the vehicle feasi-
bilities or driver responsiveness. This motivates us to define
three new responsive versions of them: responsive EF1, re-
sponsive EFX, and responsive EQX, and three new feasible
versions of them: FEF1, FEFX, and FEQX. We show that
there are settings where all feasible assignments do not sat-
isfy responsive EF1/EQX/EFX, as well as settings where all
responsive assignments do not satisfy FEF1/FEQX/FEFX.
We define therefore feasible and responsive versions of EF1,
EQX, and EFX: responsive FEF1, responsive FEQX, and re-
sponsive FEFX. For any two drivers, responsive FEF1/FEFX
assignments bound the absolute envy (i.e. subjective profit
difference) for their feasible requests. For any two drivers,
responsive FEQX assignments bound the absolute jealousy
(i.e. objective profit difference) for their feasible requests.

Furthermore, these feasible and responsive fairness no-
tions account for the fact that drivers can have feasible envy
or jealousy for an assigned request only if they are not un-
responsive when the request is assigned. We further give
algorithms for returning assignments that satisfy these no-
tions. In particular, for settings with driver-dependent costs,
we first give a polynomial-time algorithm (Algorithm 1) for
returning feasible and responsive FEF1 assignments: Theo-
rem 1. We then give another polynomial-time algorithm (Al-
gorithm 2) for returning feasible and responsive FEQX as-
signments: Theorem 2. For settings with driver-independent
costs, the notion of responsive FEQX coincides with the
notion of responsive FEFX. In this practical domain, Al-
gorithm 1 may fail to return such assignments: Lemma 1,
whereas Algorithm 2 is guaranteed to return such assign-
ments: Lemma 2. Table 1 summarises our main results.

driver-dependent costs
result rule property run-time
Thm 1 Alg 1 responsive FEF1 O(mmax{nm, T})
Thm 2 Alg 2 responsive FEQX O(mmax{nm, T})

driver-independent costs
result rule property satisfaction
Lem 1 Alg 1 responsive FEFX “no”
Lem 2 Alg 2 responsive FEFX “yes”

Table 1: A summary of results for truthful and profit-
maximising drivers with additive profits: n vehicles, m re-
quests, and deadline T ∈ Ω(m).

3 Related work

Our model generalises fair division of goods from (Brams
and Taylor 1996) by adding vehicle feasibilities and driver
responsiveness. Thus, we consider three layers of profit, fea-
sibility, and responsive preferences. Multi-layer preferences
were recently announced to broaden the research agenda
of COMSOC (Boehmer and Niedermeier 2021). Unlike ex-
isting works for EF1, EQX, and EFX, our work is about
feasible and responsive fairness in semi-decentralised set-
tings that intersect behavioral game theory (Camerer 2003).
For VRPs, Rheingans-Yoo et al. (2019) analysed matchings
with driver location (not profit) preferences. Ma et al. (2019)
modelled spatio-temporal settings with a focus on drivers.
Xu and Xu (2020) investigated trading the system efficiency
for the income equality of drivers. By comparison, we fo-
cus on the profit preferences of drivers and the feasibili-
ties of their vehicles. For fair division, Dror, Feldman, and
Segal-Halevi (2021) considered a model, where agents have
categories and upper quotas. The authors studied F-EF1 as-
signments for centralised settings. By comparison, we study
responsive FEF1, responsive FEQX, and responsive FEFX
for semi-decentralised settings. In (Gerding et al. 2019) and
(Kash, Procaccia, and Shah 2014), each agent have fixed ar-
rival and departure times. In our setting, drivers can also ar-
rive and depart but we may not know when. In each of these
settings, the (private) preferences do not change over time.



4 Preliminaries
Vehicles: We let V = {v1, . . . , vn} denote the driver vehi-
cles, where each vi has start/finish location si ∈ R2/fi ∈ R2

and capacity qi ∈ N>0. The locations could respectively de-
note depot locations, or a request location submitted in the
past and a request location predicted in the future.

Requests: We let R = {r1, . . . , rm} denote the customer
requests, where each rj = (pj , dj ,mj) has begin/end loca-
tion pj ∈ R2/dj ∈ R2 and demand mj ∈ N>0. If pj 6= dj ,
rj requires pickup and delivery (e.g. courier services, taxi
services). Otherwise, rj requires a visit (e.g. home services).

Preferences: We consider driver-dependent costs. For
servicing each rj , we let the driver of each vi charge some
cost cij ∈ R>0. Commonly, costs are proportional to the
request service times. We also consider driver-independent
costs. That is, cij = cj for each vi and each rj . We suppose
that drivers have additive profits. That is, for S ⊆ R, the
profit of the driver of vi is ci(S) =

∑
rj∈S cij . Each cost

cij can be public or private. Thus, we let c̃ij = cij if cij is
public and c̃ij = unk if cij is private (i.e. it is unknown to
the planner). The preferences are P = (c̃ij)n×m.

Feasibilities: We consider some set of constraints Cij for
each vi and each rj . Package dimensions and driver shifts
are common constraints. Thus, we can define a hard feasi-
bility indicator fij : fij = 1 if all constraints in Cij can be
satisfied; fij = 0 otherwise. We suppose that the capacity
feasibility constraint [(mj ≤ qi)?1; 0] belongs to Cij . That
is, if qi < mj , then fij = 0 holds. However, if fij = 0, then
mj ≤ qi might hold but other constraints in Cij could be vi-
olated. As for preferences, each fij can be public or private.
We let f̃ij = fij if fij is public, and else f̃ij = unk. The
feasibilities are F = (f̃ij)n×m.

Feasible assignments: In practice, Bonds Express cannot
service all requests within a single fixed time interval and,
for this reason, schedule any remaining requests for the next
time interval, even though their vehicles might be feasible
for such requests (Aleksandrov et al. 2013). As a result, the
current assignment may not give all such requests to drivers.

More formally, assignment is R = (R1, . . . , Rn), where
Ri ⊆ R for each vi and Ri ∩ Rj = ∅ for each (vi, vj) such
that i 6= j. We say that (R1, . . . , Rn) is feasible if, for each
vi and each rj ∈ Ri, fij > 0 holds. Feasible assignments
are such that no rj s.t. fij = 0 holds for each vi is assigned.

Algorithms: We consider semi-decentralised algorithms
that assign requests to drivers if the algorithms have all the
private request information of drivers, or else prompt drivers
for some such information, and drivers reveal it.

An algorithm returns some (R1, . . . , Rn) and responsive-
ness matrix U = (ũij)n×m. We can think of matrix U as
a tool for capturing the responsive behavior of drivers. For
each rj , whenever rj ∈ Ri, ũkj = 1 holds for each driver k
(also i) who is not unresponsive and ũhj = 0 holds for each
driver h 6= k who is unresponsive.

(R1, . . . , Rn) is responsive complete wrt matrix U if, for
every rj ∈ R s.t. fij > 0 and ũij = 1 hold for some vi ∈ V ,
rj ∈ Rk for some vk ∈ V with fik > 0 and ũik = 1. We
consider algorithms that return such assignments.

5 Feasibilities and EF1, EQX, EFX
In this section, we compare feasible assignments and EF1,
EQX, and EFX assignments. We begin with EF1. As we
mentioned, EF1 does not account for any feasibilities.

Definition 1. (R1, . . . , Rn) is EF1 if, for each vi, vk ∈ V
s.t. Rk 6= ∅, ci(Ri) ≥ ci(Rk\{rj}) holds for some rj ∈ Rk.

There are settings where each EF1 assignment is not fea-
sible and each feasible assignment is not EF1. We illustrate
this in Example 1.

Example 1. In a centralised setting, let there be vehicles
v1, v2 and requests r1, r2. Also, define any strictly positive
costs, and f11 = f12 = 1 but f21 = f22 = 0. For example,
the costs could be driver-independent and all equal to 1. We
make two observations for this setting.

Firstly, to achieve EF1, we observe that we must assign
exactly one request to each vehicle. There are two drivers
and two requests, so there are two EF1 assignments. Hence,
each such assignment gives some infeasible request to v2.
Such an outcome cannot be feasible.

Secondly, the unique feasible assignment gives both re-
quests to v1. However, this outcome violates EF1 because
the costs are strictly positive, and removing any single re-
quest from the bundle of the driver of v1 does not eliminate
the envy of the driver of v2.

In centralised settings, it follows by Example 1 that the
classical EF1 round-robin rule from (Caragiannis et al.
2019) may not return a feasible assignment.

We next show a similar result for EQX. For this reason,
we define EQX. Again, as we mentioned, as EF1, this notion
does not account for any feasibilities.

Definition 2. (R1, . . . , Rn) is EQX if, for each vi, vk ∈ V
s.t. Rk 6= ∅, ci(Ri) ≥ ck(Rk \ {rj}) holds for every rj ∈
Rk.

In Example 1, each EQX assignment gives one request
to each vehicle and falsifies feasibility, whereas the unique
feasible assignment falsifies EQX due to similar reasons as
for EF1. In centralised settings, it also follows by Example 1
that the EQX rule from (Freeman et al. 2019) is not guaran-
teed to return a feasible assignment.

Lastly, we confirm a similar incompatibility for EFX. We
thus define it. As EF1 and EQX, the notion of EFX does not
account for any feasibilities.

Definition 3. (R1, . . . , Rn) is EFX if, for each vi, vk ∈ V
s.t. Rk 6= ∅, ci(Ri) ≥ ci(Rk\{rj}) holds for every rj ∈ Rk.

In Example 1, each EFX assignment gives one request to
each vehicle and, moreover, is infeasible, whilst the unique
feasible assignment violates EFX. In centralised settings, it
also follows by Example 1 that the popular EFX leximin
rule from (Plaut and Roughgarden 2018) may not return a
feasible assignment.

Finally, we conclude that EF1, EQX, and EFX must be
modified in order to account for the feasibilities of vehicles
for requests.



6 Responsiveness and EF1, EQX, EFX
In this section, if driver 1 never respond and driver 2 always
do, then no semi-decentralised algorithm can guarantee to
return EF1, EQX, or EFX assignments. In Example 2, we
demonstrate this.
Example 2. In a decentralised setting, let there be v1, v2
and r1, r2. Pick unk public costs and unit public feasibilities.
As the private costs are unknown, any semi-decentralised
algorithm must prompt drivers for their private costs in some
fixed sequence of calls (e.g. 12, 21, 22, etc.). Suppose that
driver 1 never respond and driver 2 always do.

If we suppose that the algorithm returns one of the as-
signments ({r1}, {r2}) (EF1, EQX, and EFX), ({r2}, {r1})
(EF1, EQX, and EFX), or ({r1, r2}, ∅) (not EF1, EQX, or
EFX), then it must have prompted driver 1 for their private
costs. But, if it has prompted driver 1 for their private costs
and assigned some rj to driver 1 anyway, then it must have
ignored the fact that driver 1 never respond and, hence, it
cannot be semi-decentralised. This leads to a contradiction.
We conclude that it cannot assign any request rj to driver 1.
Consequently, it must assign every rj to driver 1.

More specifically, the algorithm assigns r1, r2 to driver 2
after they are prompted for responses and reveal their pri-
vate costs. This assignment violates EF1, EQX, or EFX be-
cause driver 1 is still envious and jealous even after the re-
moval of any request from 2’s bundle. Hence, the algorithm
does not return a fair assignment in this setting.

Finally, we conclude that EF1, EQX, and EFX must be
modified in order to account for the responsive behavior of
drivers.

7 Feasibilities or Responsiveness
In this section, we discuss that modifying EF1, EQX, and
EFX to account just for the feasibilities of vehicles for re-
quests or just for the responsive behavior of drivers is not
sufficient for returning feasible and responsive assignments.

We first show this for three new notions that accound just
for the responsive behavior of drivers: responsive EF1, re-
sponsive EQX, and responsive EFX.
Definition 4. (R1, . . . , Rn) is responsive EF1 wrt matrix
U = (ũij)n×m if, for each vi, vk ∈ V where RU

ii = {rj ∈
Ri|ũij = 1} and RU

ik = {rj ∈ Rk|ũij = 1} 6= ∅, ci(RU
ii) ≥

ci(R
U
ik \ {rj}) holds for some rj ∈ RU

ik.
Definition 5. (R1, . . . , Rn) is responsive EQX wrt matrix
U = (ũij)n×m if, for each vi, vk ∈ V where RU

ii = {rj ∈
Ri|ũij = 1} and RU

ik = {rj ∈ Rk|ũij = 1} 6= ∅, ci(RU
ii) ≥

ck(RU
ik \ {rj}) holds for every rj ∈ RU

ik.
Definition 6. (R1, . . . , Rn) is responsive EFX wrt matrix
U = (ũij)n×m if, for each vi, vk ∈ V where RU

ii = {rj ∈
Ri|ũij = 1} and RU

ik = {rj ∈ Rk|ũij = 1} 6= ∅, ci(RU
ii) ≥

ci(R
U
ik \ {rj}) holds for every rj ∈ RU

ik.
In centralised settings where each driver is responsive to

each request (i.e. U = (1)n×m), an assignment is responsive
EF1/EQX/EFX iff it is EF1/EQX/EFX. These follow by def-
inition. By Example 1, it follows that no feasible assignment
can ever satisfy responsive EF1/EQX/EFX.

We next show a similar result for three new notions that
accound just for the feasibilities of vehicles for requests:
FEF1, FEQX, and FEFX.

Definition 7. (R1, . . . , Rn) is FEF1 if, for each vi, vk ∈ V
where Fii = {rj ∈ Ri|fij > 0} and Fik = {rj ∈ Rk|fij >
0} 6= ∅, ci(Fii) ≥ ci(Fik \ {rj}) holds for some rj ∈ Fik.

Definition 8. (R1, . . . , Rn) is FEQX if, for each vi, vk ∈ V
where Fii = {rj ∈ Ri|fij > 0} and Fik = {rj ∈ Rk|fij >
0} 6= ∅, ci(Fii) ≥ ck(Fik \ {rj}) holds for every rj ∈ Fik.

Definition 9. (R1, . . . , Rn) is FEFX if, for each vi, vk ∈ V
where Fii = {rj ∈ Ri|fij > 0} and Fik = {rj ∈ Rk|fij >
0} 6= ∅, ci(Fii) ≥ ci(Fik \ {rj}) holds for every rj ∈ Fik.

In settings where each vehicle is feasible for each request
(i.e. unit feasibilities), an assignment is FEF1/FEQX/FEFX
iff it is EF1/EQX/EFX. These follow by definition. By Ex-
ample 2, it follows that no semi-decentralised algorithm can
ever return FEF1/FEQX/FEFX assignments.

Finally, we conclude that EF1, EQX, and EFX must be
modified, and account simultaneously for both the vehicle
feasibilities and driver responsiveness. We do exactly this in
the next sections.

8 Responsive FEF1
In our semi-decentralised setting, infeasibility and unre-
sponsiveness seem harmful for guaranteeing EF1. However,
these features take a vital part of any real-world system. For
this reason, we propose to integrate the vehicle feasibilities
and driver responsiveness into the definition of EF1.

Thus, for any pair of drivers i and k, the new subjective
responsive FEF1 requires eliminating any feasible envy that
i might have of k by removing a request from k’s bundle of
i’s feasible requests, that is assigned to k when driver i is
responsive.

Definition 10. (R1, . . . , Rn) is responsive FEF1 wrt matrix
U = (ũij)n×m if, for each vi, vk ∈ V where FU

ii = {rj ∈
Ri|fij > 0, ũij = 1} and FU

ik = {rj ∈ Rk|fij > 0, ũij =
1} 6= ∅, ci(FU

ii ) ≥ ci(F
U
ik \ {rj}) holds for some rj ∈ FU

ik .

In Example 1, each driver respond, i.e. U =
(
1 1
1 1

)
. The

unique feasible assignment gives both requests to the first
driver. This assignment is also responsive FEF1 because the
vehicle of the driver who receive no request is infeasible for
every request and, therefore, its driver does not have feasible
envy of the driver who receive both requests.

In Example 2, the returned assignment is feasible and re-
sponsive FEF1 only if the first driver responds for at most
one request, i.e. U =

(
0 0
1 1

)
,
(
1 0
1 1

)
, or
(
0 1
1 1

)
. Indeed, if they

respond for both requests, i.e. U =
(
1 1
1 1

)
, then this assign-

ment would induce feasible envy for the first driver even af-
ter removing one request from the second driver’s bundle.

Further, we give an algorithm for computing feasible and
responsive FEF1 assignments in every setting of our model:
Algorithm 1. This simulates a round-robin order by using
a driver counter at each iteration. However, unlike the clas-
sical round-robin, this new algorithm accounts for both the
vehicle feasibilities and driver responsiveness.



As the computation of the algorithm evolves, a given
driver may depart from (i.e. become “unresponsive”) or ar-
rive at (i.e. become “responsive”) the market. However, we
do not know the iterations at which they may depart from
or arrive at the market. From this perspective, we can view
the algorithm as a tool for achieving FEF1 between any two
drivers over the total numbers of the respective assignment
iterations at which they are responsive at the market. Fur-
thermore, the returned assignment is not just feasible and
responsive FEF1, but also responsive complete.

Algorithm 1: SEMI-DECENTRALISED ROUND-ROBIN

Input: V , R, P , F , deadline T ∈ Ω(|R|)
Output: an assignment that is feasible, responsive complete,
and responsive FEF1

1: ∀vi ∈ V : Ri ← ∅
2: ∀vi ∈ V : mark driver i as “responsive”
3: U = (ũij)n×m ← (1)n×m . responsiveness matrix
4: i← 1 . a driver counter
5: while R 6= ∅ do
6: if all drivers are “unresponsive” then . termination
7: exit
8: if i > n then . end of round
9: i← 1

10: continue
11: if ∃rk ∈ R : c̃ik = unk ∨ f̃ik = unk then
12: send R to driver i . decentralisation
13: if within T , driver i reply with rj , cij , fij then
14: mark driver i as “responsive”
15: c̃ij ← cij , f̃ij ← fij
16: Ri ← Ri ∪ {rj}, R← R \ {rj}
17: ∀k ∈ {h|h is “unresponsive”} : ũkj ← 0
18: else
19: mark driver i as “unresponsive”
20: i← (i + 1)
21: else
22: if ∃rk ∈ R : fik > 0 then . centralisation
23: mark driver i as “responsive”
24: rj ← arg maxrk∈R:fik>0 cik
25: Ri ← Ri ∪ {rj}, R← R \ {rj}
26: ∀k ∈ {h|h is “unresponsive”} : ũkj ← 0
27: else
28: mark driver i as “unresponsive”
29: i← (i + 1)

30: return [(R1, . . . , Rn), U ]

As we mentioned in the introduction, we consider truthful
and profit-maximising behavior of responsive drivers. That
is, whenever some driver i respond for rj ∈ R with cij and
fij , we assume that {rh ∈ R|fih > 0} 6= ∅ and rj ∈ {rk ∈
R|cik = arg maxrh∈R:fih>0 cih} hold.

Theorem 1. In our semi-decentralised setting, Algorithm 1
returns in O(m · max{n · m,T}) time an assignment that
is feasible, responsive complete and responsive FEF1 wrt
the returned matrix, supposing that drivers are truthful and
profit-maximising whenever they respond.

Proof. The complexity is dominated by at most m itera-
tions. At each of these, the current driver i enters either the
centralised phase or the decentralised phase in O(n·m) time.
The former phase takes time O(max{n,m}). The latter
phase takes time O({n, T}), during which driver i receive
the set R of unassigned requests, and they may reveal some
rj ∈ R. In this case, they are truthful and profit-maximising.
Hence, rj ∈ {rk ∈ R|cik = maxrh∈R:fih>0 cih} 6= ∅
holds. Thus, they may need to consider at most m candi-
date feasible requests but, as T ∈ Ω(m), it follows that the
overall time is O(m ·max{n ·m,T}).

Drivers pick feasible requests either in the centralised
phase or once they respond in the decetralised phase. This
continues until termination. Consequently, it is easy to de-
rive that the returned assignment (R1, . . . , Rn) is feasible
and responsive complete wrt U = (ũij)n×m. We next there-
fore show that this assignment is also responsive FEF1 wrt
U = (ũij)n×m. Pick two drivers i and k such that i 6= k.
We note that i ≤ n, k ≤ n hold. We let ri(1), . . . , ri(hi)
denote the 1st, . . . , hith requests picked up by driver i, and
rk(1), . . . , rk(hk) denote the 1st, . . . , hkth requests picked
up by driver k. Here hi, hk ∈ N≥0. We consider two cases.

Case 1: We let i < k hold. That is, driver i pick up be-
fore driver k. We also let li denote the number of requests
in rk(1), . . . , rk(hk) for which vi is feasible and not unre-
sponsive. Wlog, for li ≥ 1, let these be rk(j1), . . . , rk(jli)
where 1 ≤ j1 ≤ . . . ≤ jli ≤ hk and be picked up at rounds
s1, . . . , sli , respectively.

For any fixed l between 1 and li, we have that fijl >
0, ũijl = 1 hold. Furthermore, driver i must have picked up
a request in round sl. Otherwise, they would be infeasible
or unresponsive for rk(jl) and, hence, fijl = 0 or ũijl =
0 would hold. This would lead to a contradiction because
fijl > 0, ũijl = 1 hold. It follows that li ≤ hi holds.

As drivers are profit-maximising, driver i pick feasible re-
quests in some non-increasing cost sequence. Thus, as i <
k, ci(ri(l)) ≥ ci(rk(l)) follow for each l = 1 : li. Also, as
j1 ≥ 1, . . . , jli ≥ li, ci(rk(l)) ≥ ci(rk(jl)) follow for each
l = 1 : li. These inequalities imply ci(ri(l)) ≥ ci(rk(jl))
for each l = 1 : li.

We let FU
ii = {ri(1), . . . , ri(hi)} and FU

ik = {rk(j1),
. . . , rk(jli)}. We thus derive ci(FU

ii ) =
∑

l=1:hi
ci(ri(l)) ≥∑

l=1:li
ci(ri(l)) ≥

∑
l=1:li

ci(rk(jl)) = ci(F
U
ik). If li = 0,

then FU
ik = ∅ and ci(F

U
ii ) ≥ ci(F

U
ik) = ci(∅) = 0 hold.

Otherwise, FU
ik 6= ∅ and ci(F

U
ii ) ≥ ci(F

U
ik) ≥ ci(F

U
ik \ {r})

for each r ∈ FU
ik hold. Hence, the notion holds for driver i.

We next show that the notion also holds for driver k. We
note that driver k pick up after driver i. We let lk denote
the number of requests in ri(1), . . . , ri(hi) for which vk is
feasible and not unresponsive. Wlog, for lk ≥ 1, let these be
ri(j1), . . . , ri(jlk) with 1 ≤ j1 ≤ . . . ≤ jlk ≤ hi and be
picked up at rounds s1, . . . , slk , respectively.

For any l between 2 and lk, fkjl > 0, ũkjl = 1 hold. Also,
driver k must have picked up a request in round sl−1. Oth-
erwise, they would be infeasible or unresponsive for ri(jl)
and, hence, fkjl = 0 or ũkjl = 0 would hold. This would
lead to a contradiction because fkjl > 0, ũkjl = 1 hold. It
follows that (lk − 1) ≤ hk holds.



As i < k and driver k pick feasible requests in some non-
increasing cost sequence, ck(rk(l)) ≥ ck(ri(l + 1)) follow
for each l = 1 : (lk − 1). Also, as j1 ≥ 1, . . . , jlk ≥ lk,
ck(ri(l+1)) ≥ ck(ri(jl+1)) follow for each l = 1 : (lk−1).
These inequalities imply ck(rk(l)) ≥ ck(ri(jl+1)) for each
l = 1 : (lk − 1).

We let FU
kk = {rk(1), . . . , rk(hk)} and FU

ki = {ri(j1),
. . . , ri(jlk)}. We derive ck(FU

kk) =
∑

l=1:hk
ck(rk(l)) ≥∑

l=1:(lk−1) ck(rk(l)) ≥
∑

l=1:(lk−1) ck(ri(jl+1)). The lat-
ter sum is ck(FU

ki \ {ri(j1)}). If lk = 0, then FU
ki = ∅

and ck(FU
kk) ≥ ck(∅) = 0 hold. Otherwise, FU

ki 6= ∅ and
ck(FU

kk) ≥ ck(FU
ki \ {ri(j1)}) for ri(j1) ∈ FU

ki hold.
Case 2: We let i > k hold. We now go to Case 1 with

i = k and k = i, and follow the proof of Case 1. The result
follows.

9 Responsive FEQX
Similarly as for FEF1, we propose to integrate the feasibili-
ties and responsiveness into the definition of EQX. Thus, for
any pair of drivers i and k, the new objective FEQX requires
eliminating any feasible jealousy that i might have of k by
removing a request from k’s bundle of i’s feasible requests,
that is assigned to k when driver i is responsive.
Definition 11. (R1, . . . , Rn) is responsive FEQX wrt ma-
trix U = (ũij)n×m if, for each vi, vk ∈ V where FU

ii =
{rj ∈ Ri|fij > 0, ũij = 1} and FU

ik = {rj ∈ Rk|fij >
0, ũij = 1} 6= ∅, ci(FU

ii ) ≥ ck(FU
ik \ {rj}) holds for every

rj ∈ FU
ik .

For responsive FEQX, we can draw similar conclusions as
for responsive FEF1 in Examples 1 and 2. In summary, fea-
sible and responsive FEQX assignments may not be EQX
wrt private costs of drivers simply because the vehicle feasi-
bilities or driver responsiveness may force such assignments
to give all requests to one driver.

We give another algorithm for computing feasible and re-
sponsive FEQX assignments in every setting of our model:
Algorithm 2. This algorithm simulates a greedy selection of
some minimum (min) profit driver at each iteration and lets
such a driver pick or respond for a most profitable (max), re-
maining, and feasible request. Thus, for two or more drivers,
this algorithm and Algorithm 1 may return different assign-
ments, because the former algorithm may select the same
driver at two or more consecutive iterations whereas Algo-
rithm 1 selects a driver at a given iteration that is different
from the one selected at the previous iteration.

As the computation of the new algorithm evolves, a given
driver may depart from the market (i.e. become “unrespon-
sive”) when their vehicle is removed from the fleet. This is
another difference with Algorithm 1, suggesting that achiev-
ing responsive FEQX invites drivers to respond actively,
supposing that they want to receive more requests and, thus,
higher profit. From this perspective, we can view the new
algorithm as a tool for achieving FEQX between any two
drivers over the total numbers of their respective assignment
iterations at which they are present at the market. Further-
more, in addition to feasibility and responsive FEQX, the
returned assignment is also responsive complete.

Algorithm 2: SEMI-DECENTRALISED MIN-MAX

Input: V , R, P , F , deadline T ∈ Ω(|R|)
Output: an assignment that is feasible, responsive complete,
and responsive FEQX

1: ∀vi ∈ V : Ri ← ∅
2: ∀vi ∈ V : mark driver i as “responsive”
3: U = (ũij)n×m ← (1)n×m . responsiveness matrix
4: while R 6= ∅ do
5: if all drivers are “unresponsive” then . termination
6: exit
7: vi ← arg minvh∈V c̃h(Rh) . c̃h(Rh) = ch(Rh)

8: if ∃rk ∈ R : c̃ik = unk ∨ f̃ik = unk then
9: send R to driver i . decentralisation

10: if within T , driver i reply with rj , cij , fij then
11: mark driver i as “responsive”
12: c̃ij ← cij , f̃ij ← fij
13: Ri ← Ri ∪ {rj}, R← R \ {rj}
14: ∀k ∈ {h|h is “unresponsive”} : ũkj ← 0
15: else
16: mark driver i as “unresponsive”
17: V ← V \ {vi}
18: else
19: if ∃rk ∈ R : fik > 0 then . centralisation
20: mark driver i as “responsive”
21: rj ← arg maxrk∈R:fik>0 cik
22: Ri ← Ri ∪ {rj}, R← R \ {rj}
23: ∀k ∈ {h|h is “unresponsive”} : ũkj ← 0
24: else
25: mark driver i as “unresponsive”
26: V ← V \ {vi}
27: return [(R1, . . . , Rn), U ]

We next compare Algorithms 1 and 2 in terms of their
returned assignments. On the one hand, Algorithm 1 may
return assignments that are not responsive FEQX. On the
other hand, Algorithm 2 may return assignments that are not
responsive FEF1. To observe these clearly, we give a simple
setting in Example 3.

Example 3. In a centralised setting, let there be v1, v2
and r1, r2, r3, r4. Define the costs as: c11 = 3, c12 =
c13 = c14 = 2 and c21 = 6, c22 = c23 = c24 =
1. Pick unit feasibilities. Algorithm 1 gives priority firstly
to driver 1 and secondly to driver 2. Hence, it may re-
turn ({r1, r2}, {r3, r4}). This assignment is not responsive
FEQX because of c2({r3, r4}) = 2 < 3 = c1({r1}). In
contrast, Algorithm 2 may pick driver 1 at the first itera-
tion and then it must pick driver 2 at any of the next itera-
tions. Thus, it may return ({r1}, {r2, r3, r4}). This assign-
ment is not responsive FEF1 because of c1({r1}) = 3 <
4 = c1({r2, r3}) = c1({r2, r4}) = c1({r3, r4}).

Theorem 2. In our semi-decentralised setting, Algorithm 2
returns in O(m · max{n · m,T}) time an assignment that
is feasible, responsive complete and responsive FEQX wrt
the returned matrix, supposing that drivers are truthful and
profit-maximising whenever they respond.



Proof. For each iteration, after O(n · m) time, the
centralisation/decentralisation phase takes O(max{n,m})/
O({n, T}) time. For each driver k, we note that c̃k(Rk) =
ck(Rk) holds because if they are assigned some rj then
c̃kj = ckj holds. Hence, the choice of the current least
bundle profit driver i is well-defined. They may respond
within T with some rj ∈ R. In this case, driver i are truth-
ful and profit-maximising. Hence, rj ∈ {rk ∈ R|cik =
maxrh∈R:fih>0 cih} 6= ∅ holds. Thus, they may need to
consider at most m candidate requests but, as T ∈ Ω(m),
it follows that the overall time is O(m ·max{n ·m,T}).

It is easy to see that the returned (R1, . . . , Rn) is fea-
sible and responsive complete wrt U = (ũij)n×m. We
next therefore show that it is also responsive FEQX wrt
U = (ũij)n×m. Wlog, we let (r1, . . . , rs) denote the pick-
ing order. We note that s ≤ m holds. We also let h denote
the iteration number at termination. We note that h ≥ (s+1)
holds. We next let M(p) = (R1(p), . . . , Rn(p)) denote the
partial assignment at the start of iteration p. We prove by in-
duction on p ∈ {1, . . . , h} that M(p) is responsive FEQX
wrt U = (ũij)n×m. Hence, M(h) = (R1, . . . , Rn) as well.

In the base case, we let p = 1. M(1) = (∅, . . . , ∅) is re-
sponsive FEQX wrt U by definition. In the hypothesis, we
let p < h and suppose that M(p) is responsive FEQX wrt
U . We note that R 6= ∅ hold and some drivers are not “unre-
sponsive”. In the step case, if no request is assigned at iter-
ation p then M(p + 1) = (R1(p), . . . , Rn(p)) is responsive
FEQX wrt U by the hypothesis. For this purpose, we sup-
pose that rj is the request assigned to vi at iteration p. Let
us look at M(p+ 1) = (R1(p), . . . , Ri(p+ 1), . . . , Rn(p)),
where Ri(p + 1) = Ri(p) ∪ {rj}.

For the drivers of vk, vl ∈ V with k 6= i, l 6= i,
ck(FU

kk(p)) ≥ cl(F
U
kl(p)) − clh holds for each rh ∈ FU

kl(p)
by the hypothesis and the fact that the bundles of vk, vl do
not change between M(p) and M(p + 1).

We note that V 6= ∅ holds because not all drivers are
marked as “unresponsive”. Otherwise, the algorithm would
have terminated. This would imply p = h and lead to a
contradiction with p < h. We note that V ⊂ {v1 . . . , vn}
might hold because some drivers might have been “unre-
sponsive” prior to iteration p and, for this reason, their ve-
hicles might have been removed from {v1 . . . , vn} by the
algorithm. Wlog, suppose that V ⊂ {v1 . . . , vn} holds. We
consider two cases.

Case 1: Pick some vk ∈ {v1 . . . , vn} \ V . We note that
vi ∈ V and, hence, k 6= i holds.

Sub-case 1.1: For the driver of vi, it follows by the induc-
tion hypothesis and the fact that driver i have strictly higher
profit in M(p + 1) than in M(p) that driver i are responsive
FEQX wrt U of driver k. Indeed, ci(FU

ii (p + 1)) = cij +
ci(F

U
ii (p)) ≥ ck(FU

ik(p))− ckh holds for each rh ∈ FU
ik(p)

because of fij > 0 and ũij = 1.
Sub-case 1.2: For the driver of vk, it follows by the in-

duction hypothesis and the fact that driver k are “unre-
sponsive” and, therefore, ũkj = 0 holds at iteration p that
driver k are responsive FEQX wrt U of driver i. Indeed,
ck(FU

kk(p)) ≥ ci(F
U
ki(p))−cih = ci(F

U
ki(p+1))−cih holds

for each rh ∈ FU
ki(p + 1) because of FU

ki(p) = FU
ki(p + 1).

Case 2: Pick some vk ∈ V with k 6= i. We again consider
two sub-cases.

Sub-case 2.1: For the driver of vi, we have that ci(Fii(p+
1)) = cij+ci(F

U
ii (p)) holds by fij > 0 and ũij = 1, as well

as ci(Fii(p)) ≥ ck(Fik(p))−ckh holds for each rh ∈ Fik(p)
by the hypothesis. Hence, driver i are responsive FEQX wrt
U of driver k.

Sub-case 2.2: For the driver of vk, we observe that
ck(Rk(p)) ≥ ci(Ri(p)) holds by the fact that vi is the least
bundle profit vehicle within V . Therefore, ck(FU

kk(p)) ≥
ci(F

U
ii (p)) also holds because vi and vk are assigned only

feasible requests when they are “responsive” (i.e. FU
kk(p) =

Rk(p) and FU
ii (p) = Ri(p)). As vk might not be feasible for

all requests in FU
ii (p), we derive FU

ii (p) ⊇ FU
ki(p). By addi-

tivity, it follows that ci(FU
ii (p)) ≥ ci(F

U
ki(p)) holds. Conse-

quently, ck(FU
kk(p)) ≥ ci(F

U
ki(p)) holds as well.

If fkj = 0 or ũkj = 0, we derive ck(FU
kk(p)) ≥

ci(F
U
ki(p+ 1)) because of FU

ki(p+ 1) = FU
ki(p). Otherwise,

we derive ck(FU
kk(p)) ≥ ci(F

U
ki(p + 1)) − cij because of

FU
ki(p + 1) \ {rj} = FU

ki(p) and additivity. As driver i are
profit-maximising, they pick feasible requests in some non-
increasing cost sequence. It follows that cih ≥ cij holds
for any rh ∈ FU

ki(p + 1). This implies ci(F
U
ki(p + 1)) −

cij ≥ ci(F
U
ki(p + 1)) − cih. We thus derive ck(FU

kk(p)) ≥
ci(F

U
ki(p + 1))− cih for each rh ∈ FU

ki(p + 1).

10 Responsive FEFX
In many real-world applications, the planner fix each re-
quest cost but semi-decentralise the feasibilities (e.g. DHL,
GoAirlink). The cost of a given request thus does not de-
pend on which feasible vehicle services the customer. For
such applications, we define responsive FEFX.

Definition 12. (R1, . . . , Rn) is responsive FEFX wrt matrix
U = (ũij)n×m if, for each vi, vk ∈ V where FU

ii = {rj ∈
Ri|fij > 0, ũij = 1} and FU

ik = {rj ∈ Rk|fij > 0, ũij =
1} 6= ∅, ci(FU

ii ) ≥ ci(F
U
ik \ {rj}) holds for every rj ∈ FU

ik .

With driver-independent costs, Algorithm 1 may not re-
turn a responsive FEFX assignment. By comparison, Algo-
rithm 2 is guaranteed to return such an assignment in appli-
cations from this practical domain. We next prove these two
results.

Lemma 1. There are centralised settings with driver-
independent costs, where Algorithm 1 may not return an as-
signment that is responsive FEFX wrt the returned matrix.

Proof. In a centralised setting, let there be v1, v2 and
r1, r2, r3, r4. For each vi, define the costs as: ci1 = 3, ci2 =
ci3 = ci4 = 1. Pick unit feasibilities. We run Algorithm 1
in this setting. The algorithm gives priority firstly to driver
1 and secondly to driver 2. Hence, the algorithm may return
assignment ({r1, r2}, {r3, r4}). This assignment is not re-
sponsive FEFX because the envy of driver 2 cannot be elim-
inated by removing r2 from the bundle of driver 1. To verify
this, we observe that the inequality c2({r3, r4}) = 2 < 3 =
c2({r1}) holds.



Lemma 2. In our semi-decentralised setting with driver-
independent costs, Algorithm 2 returns an assignment that
is responsive FEFX wrt the returned matrix, if drivers are
truthful and profit-maximising whenever they respond.

Proof. With driver-independent costs, the notions of respon-
sive FEFX and responsive FEQX coincide. This follows
by the additivity of the profit preferences and the fact that
cij = cj holds for each vi ∈ V and each rj ∈ R. By Theo-
rem 2, the result follows.

11 Conclusions
We considered semi-decentralised fair division settings in
the context of emerging vehicle routing problems, where not
just the preferences of drivers play a crucial role, but also the
feasibilities of their vehicles. We showed that popular no-
tions such as EF1, EQX, and EFX, are not able to cope with
the vehicle feasibilities or driver responsiveness in such set-
tings. This motivated us to define respectively new notions:
responsive FEF1, responsive FEQX, and responsive FEFX.
They are applicable to semi-decentralised settings, including
the traditional centralised settings.

We also proposed two new algorithms for such settings.
For the theoretical domain of driver-dependent costs, our
first algorithm returns an assignment that is feasible, respon-
sive complete, and responsive FEF1, and our second algo-
rithm returns an assignment that is feasible, responsive com-
plete, and responsive FEQX. For the practical domain of
driver-independent costs, responsive FEQX and responsive
FEEX coincide and, therefore, returning responsive FEFX
assignments in many real-world VRP applications is possi-
ble. Finally, we summarised our main results in Table 1.

References
Aleksandrov, M.; Barahona, P.; Kilby, P.; and Walsh, T.
2013. Heuristics and Policies for Online Pickup and De-
livery Problems. In Proceedings of AAAI 2013, July 14-18,
2013, Bellevue, WA, USA.
Boehmer, N.; and Niedermeier, R. 2021. Broadening the Re-
search Agenda for Computational Social Choice: Multiple
Preference Profiles and Multiple Solutions. In Proceedings
of the 20th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’21, 15. Richland, SC:
International Foundation for Autonomous Agents and Mul-
tiagent Systems. ISBN 9781450383073.
Brams, S. J.; and Taylor, A. D. 1996. Fair Division - from
Cake-cutting to Dispute Resolution. Cambridge University
Press. ISBN 978-0-521-55644-6.
Budish, E. 2011. The Combinatorial Assignment Problem:
Approximate Competitive Equilibrium from Equal Incomes.
Journal of Political Economy, 119(6): 1061–1103.
Camerer, C. F. 2003. Behavioral Game Theory Experiment
in Strategic Interaction, volume 32. Princeton University
Press. ISBN 978-0-691-09039-9.
Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A. D.;
Shah, N.; and Wang, J. 2019. The Unreasonable Fairness of
Maximum Nash Welfare. ACM Transactions on Economics
and Computation, 7(3).

Conitzer, V.; Freeman, R.; and Shah, N. 2017. Fair Pub-
lic Decision Making. In Daskalakis, C.; Babaioff, M.; and
Moulin, H., eds., Proceedings of the 2017 ACM Conference
on Economics and Computation, EC ’17, Cambridge, MA,
USA, June 26-30, 2017, 629–646. ACM.
Dantzig, G. B.; and Ramser, J. H. 1959. The Truck Dis-
patching Problem. Management Science, 6: 80–91.
Dror, A.; Feldman, M.; and Segal-Halevi, E. 2021. On
Fair Division under Heterogeneous Matroid Constraints.
In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2021, The Eleventh Sym-
posium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, 5312–5320.
AAAI Press.
Freeman, R.; Sikdar, S.; Vaish, R.; and Xia, L. 2019. Eq-
uitable Allocations of Indivisible Goods. In Proceedings of
the 28th International Joint Conference on Artificial Intel-
ligence, 280–286. International Joint Conferences on Artifi-
cial Intelligence Organization.
Gerding, E. H.; Perez-Diaz, A.; Aziz, H.; Gaspers, S.;
Marcu, A.; Mattei, N.; and Walsh, T. 2019. Fair Online
Allocation of Perishable Goods and its Application to Elec-
tric Vehicle Charging. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence,
IJCAI-19, 5569–5575. International Joint Conferences on
Artificial Intelligence Organization.
Kash, I. A.; Procaccia, A. D.; and Shah, N. 2014. No Agent
Left Behind: Dynamic Fair Division of Multiple Resources.
JAIR, 51: 579–603.
Ma, H.; Fang, F.; and Parkes, D. C. 2019. Spatio-Temporal
Pricing for Ridesharing Platforms. In Proceedings of the
2019 ACM Conference on Economics and Computation, EC
’19, 583. New York, NY, USA: Association for Computing
Machinery.
Männel, D.; and Bortfeldt, A. 2018. Solving the pickup and
delivery problem with three-dimensional loading constraints
and reloading ban. European Journal of Operational Re-
search, 264(1): 119–137.
Plaut, B.; and Roughgarden, T. 2018. Almost Envy-Freeness
with General Valuations. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, 2584–2603.
Rheingans-Yoo, D.; Kominers, S. D.; Ma, H.; and Parkes,
D. C. 2019. Ridesharing with Driver Location Preferences.
In Proceedings of IJCAI-19, 557–564. International Joint
Conferences on Artificial Intelligence Organization.
Savelsbergh, M. W. P.; and Sol, M. 1995. The General
Pickup and Delivery Problem. Transportation Science,
29(1): 17–29.
Xu, Y.; and Xu, P. 2020. Trade the System Efficiency for
the Income Equality of Drivers in Rideshare. In Bessiere,
C., ed., Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI-20, 4199–4205.
International Joint Conferences on Artificial Intelligence Or-
ganization.


	Introduction
	Contributions
	Related work
	Preliminaries
	Feasibilities and EF1, EQX, EFX
	Responsiveness and EF1, EQX, EFX
	Feasibilities or Responsiveness
	Responsive FEF1
	Responsive FEQX
	Responsive FEFX
	Conclusions

